Document Layout Analysis - IPageSegmenter, Docstrum

- Create a TextBlock class
- Creates IPageSegmenter
- Add other useful distances: angle, etc.
- Update RecursiveXYCut
 - With IPageSegmenter and TextBlock
 - Make XYNode and XYLeaf internal
- Optimise (faster) NearestNeighbourWordExtractor and isolate the clustering algorithms for use outside of this class
- Implement a Docstrum inspired page segmentation algorithm
This commit is contained in:
BobLd
2019-08-10 16:01:27 +01:00
parent 2d6e49426a
commit eb9a9fd00e
10 changed files with 544 additions and 119 deletions

View File

@@ -0,0 +1,164 @@
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using UglyToad.PdfPig.Geometry;
namespace UglyToad.PdfPig.DocumentLayoutAnalysis
{
/// <summary>
/// Clustering Algorithms.
/// </summary>
internal class ClusteringAlgorithms
{
/// <summary>
/// Algorithm to group elements via transitive closure, using nearest neighbours and maximum distance.
/// https://en.wikipedia.org/wiki/Transitive_closure
/// </summary>
/// <typeparam name="T">Letter, Word, TextLine, etc.</typeparam>
/// <param name="elements">Array of elements to group.</param>
/// <param name="distMeasure">The distance measure between two points.</param>
/// <param name="maxDistanceFunction">The function that determines the distance between to points in the same cluster.</param>
/// <param name="pivotPoint">The pivot's point to use.</param>
/// <param name="candidatesPoint">The candidates to pair point to use.</param>
/// <param name="filterPivot">Filter to apply to the pivot point.</param>
/// <param name="filterFinal">Filter to apply to both the pivot and the paired point.</param>
internal static IEnumerable<HashSet<int>> SimpleTransitiveClosure<T>(T[] elements,
Func<PdfPoint, PdfPoint, double> distMeasure,
Func<T, T, double> maxDistanceFunction,
Func<T, PdfPoint> pivotPoint, Func<T, PdfPoint> candidatesPoint,
Func<T, bool> filterPivot, Func<T, T, bool> filterFinal)
{
/*************************************************************************************
* Algorithm steps
* 1. Find nearest neighbours indexes (done in parallel)
* Iterate every point (pivot) and put its nearest neighbour's index in an array
* e.g. if nearest neighbour of point i is point j, then indexes[i] = j.
* Only conciders a neighbour if it is within the maximum distance.
* If not within the maximum distance, index will be set to -1.
* NB: Given the possible asymmetry in the relationship, it is possible
* that if indexes[i] = j then indexes[j] != i.
*
* 2. Group indexes
* Group indexes if share neighbours in common - Transitive closure
* e.g. if we have indexes[i] = j, indexes[j] = k, indexes[m] = n and indexes[n] = -1
* (i,j,k) will form a group and (m,n) will form another group.
*
* 3. Merge groups that have indexes in common - If any
* If there are group with indexes in common, merge them.
* (Could be improved and put in step 2)
*************************************************************************************/
int[] indexes = Enumerable.Repeat((int)-1, elements.Length).ToArray();
var candidatesPoints = elements.Select(x => candidatesPoint(x)).ToList();
// 1. Find nearest neighbours indexes
Parallel.For(0, elements.Length, e =>
{
var pivot = elements[e];
if (filterPivot(pivot))
{
int index = pivotPoint(pivot).FindIndexNearest(candidatesPoints, distMeasure, out double dist);
var paired = elements[index];
if (filterFinal(pivot, paired) && dist < maxDistanceFunction(pivot, paired))
{
indexes[e] = index;
}
}
});
// 2. Group indexes
List<HashSet<int>> groupedIndexes = new List<HashSet<int>>();
HashSet<int> indexDone = new HashSet<int>();
for (int e = 0; e < elements.Length; e++)
{
int index = indexes[e];
if (index == -1) // This element is not connected
{
// Check if another element index is connected to this element (nb: distance measure is asymetric)
if (!indexes.Contains(e))
{
// If no other element is connected to this element, add it as a standalone element
groupedIndexes.Add(new HashSet<int>() { e });
indexDone.Add(e);
}
continue;
}
bool isDoneC = indexDone.Contains(e);
bool isDoneI = indexDone.Contains(index);
if (isDoneC || isDoneI)
{
if (isDoneC && !isDoneI)
{
foreach (var pair in groupedIndexes.Where(x => x.Contains(e)))
{
pair.Add(index);
}
indexDone.Add(index);
}
else if (!isDoneC && isDoneI)
{
foreach (var pair in groupedIndexes.Where(x => x.Contains(index)))
{
pair.Add(e);
}
indexDone.Add(e);
}
else // isDoneC && isDoneI
{
foreach (var pair in groupedIndexes.Where(x => x.Contains(index)))
{
if (!pair.Contains(e)) pair.Add(e);
}
foreach (var pair in groupedIndexes.Where(x => x.Contains(e)))
{
if (!pair.Contains(index)) pair.Add(index);
}
}
}
else
{
groupedIndexes.Add(new HashSet<int>() { e, index });
indexDone.Add(e);
indexDone.Add(index);
}
}
// Check that all elements are done
if (elements.Length != indexDone.Count)
{
throw new Exception("ClusteringAlgorithms.GetNNGroupedIndexes(): Some elements were not done.");
}
// 3. Merge groups that have indexes in common
// Check if duplicates (if duplicates, then same index in different groups)
if (indexDone.Count != groupedIndexes.SelectMany(x => x).Count())
{
for (int e = 0; e < elements.Length; e++)
{
List<HashSet<int>> candidates = groupedIndexes.Where(x => x.Contains(e)).ToList();
int count = candidates.Count();
if (count < 2) continue; // Only one group with this index
HashSet<int> merged = candidates.First();
groupedIndexes.Remove(merged);
for (int i = 1; i < count; i++)
{
var current = candidates.ElementAt(i);
merged.UnionWith(current);
groupedIndexes.Remove(current);
}
groupedIndexes.Add(merged);
}
}
return groupedIndexes;
}
}
}