Files
PdfPig/src/UglyToad.PdfPig.DocumentLayoutAnalysis/ClusteringAlgorithms.cs

325 lines
16 KiB
C#

namespace UglyToad.PdfPig.DocumentLayoutAnalysis
{
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Geometry;
using Core;
/// <summary>
/// Clustering Algorithms.
/// </summary>
internal class ClusteringAlgorithms
{
/// <summary>
/// Algorithm to group elements using nearest neighbours.
/// </summary>
/// <typeparam name="T">Letter, Word, TextLine, etc.</typeparam>
/// <param name="elements">List of elements to group.</param>
/// <param name="distMeasure">The distance measure between two points.</param>
/// <param name="maxDistanceFunction">The function that determines the maximum distance between two points in the same cluster.</param>
/// <param name="pivotPoint">The pivot's point to use for pairing, e.g. BottomLeft, TopLeft.</param>
/// <param name="candidatesPoint">The candidates' point to use for pairing, e.g. BottomLeft, TopLeft.</param>
/// <param name="filterPivot">Filter to apply to the pivot point. If false, point will not be paired at all, e.g. is white space.</param>
/// <param name="filterFinal">Filter to apply to both the pivot and the paired point. If false, point will not be paired at all, e.g. pivot and paired point have same font.</param>
/// <param name="maxDegreeOfParallelism">Sets the maximum number of concurrent tasks enabled.
/// <para>A positive property value limits the number of concurrent operations to the set value.
/// If it is -1, there is no limit on the number of concurrently running operations.</para></param>
internal static IEnumerable<HashSet<int>> ClusterNearestNeighbours<T>(List<T> elements,
Func<PdfPoint, PdfPoint, double> distMeasure,
Func<T, T, double> maxDistanceFunction,
Func<T, PdfPoint> pivotPoint, Func<T, PdfPoint> candidatesPoint,
Func<T, bool> filterPivot, Func<T, T, bool> filterFinal,
int maxDegreeOfParallelism)
{
/*************************************************************************************
* Algorithm steps
* 1. Find nearest neighbours indexes (done in parallel)
* Iterate every point (pivot) and put its nearest neighbour's index in an array
* e.g. if nearest neighbour of point i is point j, then indexes[i] = j.
* Only conciders a neighbour if it is within the maximum distance.
* If not within the maximum distance, index will be set to -1.
* Each element has only one connected neighbour.
* NB: Given the possible asymmetry in the relationship, it is possible
* that if indexes[i] = j then indexes[j] != i.
*
* 2. Group indexes
* Group indexes if share neighbours in common - Depth-first search
* e.g. if we have indexes[i] = j, indexes[j] = k, indexes[m] = n and indexes[n] = -1
* (i,j,k) will form a group and (m,n) will form another group.
*************************************************************************************/
int[] indexes = Enumerable.Repeat(-1, elements.Count).ToArray();
var candidatesPoints = elements.Select(candidatesPoint).ToList();
ParallelOptions parallelOptions = new ParallelOptions() { MaxDegreeOfParallelism = maxDegreeOfParallelism };
// 1. Find nearest neighbours indexes
Parallel.For(0, elements.Count, parallelOptions, e =>
{
var pivot = elements[e];
if (filterPivot(pivot))
{
int index = pivot.FindIndexNearest(elements, candidatesPoint, pivotPoint, distMeasure, out double dist);
if (index != -1)
{
var paired = elements[index];
if (filterFinal(pivot, paired) && dist < maxDistanceFunction(pivot, paired))
{
indexes[e] = index;
}
}
}
});
// 2. Group indexes
var groupedIndexes = GroupIndexes(indexes);
return groupedIndexes;
}
/// <summary>
/// Algorithm to group elements using nearest neighbours.
/// </summary>
/// <typeparam name="T">Letter, Word, TextLine, etc.</typeparam>
/// <param name="elements">Array of elements to group.</param>
/// <param name="distMeasure">The distance measure between two points.</param>
/// <param name="maxDistanceFunction">The function that determines the maximum distance between two points in the same cluster.</param>
/// <param name="pivotPoint">The pivot's point to use for pairing, e.g. BottomLeft, TopLeft.</param>
/// <param name="candidatesPoint">The candidates' point to use for pairing, e.g. BottomLeft, TopLeft.</param>
/// <param name="filterPivot">Filter to apply to the pivot point. If false, point will not be paired at all, e.g. is white space.</param>
/// <param name="filterFinal">Filter to apply to both the pivot and the paired point. If false, point will not be paired at all, e.g. pivot and paired point have same font.</param>
/// <param name="maxDegreeOfParallelism">Sets the maximum number of concurrent tasks enabled.
/// <para>A positive property value limits the number of concurrent operations to the set value.
/// If it is -1, there is no limit on the number of concurrently running operations.</para></param>
internal static IEnumerable<HashSet<int>> ClusterNearestNeighbours<T>(T[] elements,
Func<PdfPoint, PdfPoint, double> distMeasure,
Func<T, T, double> maxDistanceFunction,
Func<T, PdfPoint> pivotPoint, Func<T, PdfPoint> candidatesPoint,
Func<T, bool> filterPivot, Func<T, T, bool> filterFinal,
int maxDegreeOfParallelism)
{
/*************************************************************************************
* Algorithm steps
* 1. Find nearest neighbours indexes (done in parallel)
* Iterate every point (pivot) and put its nearest neighbour's index in an array
* e.g. if nearest neighbour of point i is point j, then indexes[i] = j.
* Only conciders a neighbour if it is within the maximum distance.
* If not within the maximum distance, index will be set to -1.
* Each element has only one connected neighbour.
* NB: Given the possible asymmetry in the relationship, it is possible
* that if indexes[i] = j then indexes[j] != i.
*
* 2. Group indexes
* Group indexes if share neighbours in common - Depth-first search
* e.g. if we have indexes[i] = j, indexes[j] = k, indexes[m] = n and indexes[n] = -1
* (i,j,k) will form a group and (m,n) will form another group.
*************************************************************************************/
int[] indexes = Enumerable.Repeat(-1, elements.Length).ToArray();
var candidatesPoints = elements.Select(candidatesPoint).ToList();
ParallelOptions parallelOptions = new ParallelOptions() { MaxDegreeOfParallelism = maxDegreeOfParallelism };
// 1. Find nearest neighbours indexes
Parallel.For(0, elements.Length, parallelOptions, e =>
{
var pivot = elements[e];
if (filterPivot(pivot))
{
int index = pivot.FindIndexNearest(elements, candidatesPoint, pivotPoint, distMeasure, out double dist);
if (index != -1)
{
var paired = elements[index];
if (filterFinal(pivot, paired) && dist < maxDistanceFunction(pivot, paired))
{
indexes[e] = index;
}
}
}
});
// 2. Group indexes
var groupedIndexes = GroupIndexes(indexes);
return groupedIndexes;
}
/// <summary>
/// Algorithm to group elements using nearest neighbours.
/// </summary>
/// <typeparam name="T">Letter, Word, TextLine, etc.</typeparam>
/// <param name="elements">Array of elements to group.</param>
/// <param name="distMeasure">The distance measure between two lines.</param>
/// <param name="maxDistanceFunction">The function that determines the maximum distance between two points in the same cluster.</param>
/// <param name="pivotLine">The pivot's line to use for pairing.</param>
/// <param name="candidatesLine">The candidates' line to use for pairing.</param>
/// <param name="filterPivot">Filter to apply to the pivot point. If false, point will not be paired at all, e.g. is white space.</param>
/// <param name="filterFinal">Filter to apply to both the pivot and the paired point. If false, point will not be paired at all, e.g. pivot and paired point have same font.</param>
/// <param name="maxDegreeOfParallelism">Sets the maximum number of concurrent tasks enabled.
/// <para>A positive property value limits the number of concurrent operations to the set value.
/// If it is -1, there is no limit on the number of concurrently running operations.</para></param>
internal static IEnumerable<HashSet<int>> ClusterNearestNeighbours<T>(T[] elements,
Func<PdfLine, PdfLine, double> distMeasure,
Func<T, T, double> maxDistanceFunction,
Func<T, PdfLine> pivotLine, Func<T, PdfLine> candidatesLine,
Func<T, bool> filterPivot, Func<T, T, bool> filterFinal,
int maxDegreeOfParallelism)
{
/*************************************************************************************
* Algorithm steps
* 1. Find nearest neighbours indexes (done in parallel)
* Iterate every point (pivot) and put its nearest neighbour's index in an array
* e.g. if nearest neighbour of point i is point j, then indexes[i] = j.
* Only conciders a neighbour if it is within the maximum distance.
* If not within the maximum distance, index will be set to -1.
* Each element has only one connected neighbour.
* NB: Given the possible asymmetry in the relationship, it is possible
* that if indexes[i] = j then indexes[j] != i.
*
* 2. Group indexes
* Group indexes if share neighbours in common - Depth-first search
* e.g. if we have indexes[i] = j, indexes[j] = k, indexes[m] = n and indexes[n] = -1
* (i,j,k) will form a group and (m,n) will form another group.
*************************************************************************************/
int[] indexes = Enumerable.Repeat(-1, elements.Length).ToArray();
var candidatesLines = elements.Select(x => candidatesLine(x)).ToList();
ParallelOptions parallelOptions = new ParallelOptions() { MaxDegreeOfParallelism = maxDegreeOfParallelism };
// 1. Find nearest neighbours indexes
Parallel.For(0, elements.Length, parallelOptions, e =>
{
var pivot = elements[e];
if (filterPivot(pivot))
{
int index = pivot.FindIndexNearest(elements, candidatesLine, pivotLine, distMeasure, out double dist);
if (index != -1)
{
var paired = elements[index];
if (filterFinal(pivot, paired) && dist < maxDistanceFunction(pivot, paired))
{
indexes[e] = index;
}
}
}
});
// 2. Group indexes
var groupedIndexes = GroupIndexes(indexes);
return groupedIndexes;
}
/// <summary>
/// Group elements using Depth-first search.
/// <para>https://en.wikipedia.org/wiki/Depth-first_search</para>
/// </summary>
/// <param name="edges">The graph. edges[i] = j indicates that there is an edge between i and j.</param>
/// <returns>A List of HashSets containing containing the grouped indexes.</returns>
internal static List<HashSet<int>> GroupIndexes(int[] edges)
{
int[][] adjacency = new int[edges.Length][];
for (int i = 0; i < edges.Length; i++)
{
HashSet<int> matches = new HashSet<int>();
if (edges[i] != -1) matches.Add(edges[i]);
for (int j = 0; j < edges.Length; j++)
{
if (edges[j] == i) matches.Add(j);
}
adjacency[i] = matches.ToArray();
}
List<HashSet<int>> groupedIndexes = new List<HashSet<int>>();
bool[] isDone = new bool[edges.Length];
for (int p = 0; p < edges.Length; p++)
{
if (isDone[p]) continue;
groupedIndexes.Add(DfsIterative(p, adjacency, ref isDone));
}
return groupedIndexes;
}
/// <summary>
/// Group elements using Depth-first search.
/// <para>https://en.wikipedia.org/wiki/Depth-first_search</para>
/// </summary>
/// <param name="edges">The graph. edges[i] = [j, k, l, ...] indicates that there is an edge between i and each element j, k, l, ...</param>
/// <returns>A List of HashSets containing containing the grouped indexes.</returns>
internal static List<HashSet<int>> GroupIndexes(int[][] edges)
{
int[][] adjacency = new int[edges.Length][];
for (int i = 0; i < edges.Length; i++)
{
HashSet<int> matches = new HashSet<int>();
for (int j = 0; j < edges[i].Length; j++)
{
if (edges[i][j] != -1) matches.Add(edges[i][j]);
}
for (int j = 0; j < edges.Length; j++)
{
for (int k = 0; k < edges[j].Length; k++)
{
if (edges[j][k] == i) matches.Add(j);
}
}
adjacency[i] = matches.ToArray();
}
List<HashSet<int>> groupedIndexes = new List<HashSet<int>>();
bool[] isDone = new bool[edges.Length];
for (int p = 0; p < edges.Length; p++)
{
if (isDone[p]) continue;
groupedIndexes.Add(DfsIterative(p, adjacency, ref isDone));
}
return groupedIndexes;
}
/// <summary>
/// Depth-first search
/// <para>https://en.wikipedia.org/wiki/Depth-first_search</para>
/// </summary>
private static HashSet<int> DfsIterative(int s, int[][] adj, ref bool[] isDone)
{
HashSet<int> group = new HashSet<int>();
Stack<int> S = new Stack<int>();
S.Push(s);
while (S.Any())
{
var u = S.Pop();
if (!isDone[u])
{
group.Add(u);
isDone[u] = true;
foreach (var v in adj[u])
{
S.Push(v);
}
}
}
return group;
}
public class DfsEdge : Tuple<int, int>
{
public DfsEdge(int item1, int item2) : base(item1, item2)
{
}
}
}
}