konva/src/plugins/Path.js
2016-02-05 06:51:26 +08:00

651 lines
24 KiB
JavaScript

/*eslint-disable no-shadow, max-len, max-depth */
(function () {
'use strict';
/**
* Path constructor.
* @author Jason Follas
* @constructor
* @memberof Konva
* @augments Konva.Shape
* @param {Object} config
* @param {String} config.data SVG data string
* @@shapeParams
* @@nodeParams
* @example
* var path = new Konva.Path({
* x: 240,
* y: 40,
* data: 'M12.582,9.551C3.251,16.237,0.921,29.021,7.08,38.564l-2.36,1.689l4.893,2.262l4.893,2.262l-0.568-5.36l-0.567-5.359l-2.365,1.694c-4.657-7.375-2.83-17.185,4.352-22.33c7.451-5.338,17.817-3.625,23.156,3.824c5.337,7.449,3.625,17.813-3.821,23.152l2.857,3.988c9.617-6.893,11.827-20.277,4.935-29.896C35.591,4.87,22.204,2.658,12.582,9.551z',
* fill: 'green',
* scale: 2
* });
*/
Konva.Path = function (config) {
this.___init(config);
};
Konva.Path.prototype = {
___init: function (config) {
this.dataArray = [];
var that = this;
// call super constructor
Konva.Shape.call(this, config);
this.className = 'Path';
this.dataArray = Konva.Path.parsePathData(this.getData());
this.on('dataChange.konva', function () {
that.dataArray = Konva.Path.parsePathData(this.getData());
});
this.sceneFunc(this._sceneFunc);
},
_sceneFunc: function(context) {
var ca = this.dataArray,
closedPath = false;
// context position
context.beginPath();
for (var n = 0; n < ca.length; n++) {
var c = ca[n].command;
var p = ca[n].points;
switch (c) {
case 'L':
context.lineTo(p[0], p[1]);
break;
case 'M':
context.moveTo(p[0], p[1]);
break;
case 'C':
context.bezierCurveTo(p[0], p[1], p[2], p[3], p[4], p[5]);
break;
case 'Q':
context.quadraticCurveTo(p[0], p[1], p[2], p[3]);
break;
case 'A':
var cx = p[0], cy = p[1], rx = p[2], ry = p[3], theta = p[4], dTheta = p[5], psi = p[6], fs = p[7];
var r = (rx > ry) ? rx : ry;
var scaleX = (rx > ry) ? 1 : rx / ry;
var scaleY = (rx > ry) ? ry / rx : 1;
context.translate(cx, cy);
context.rotate(psi);
context.scale(scaleX, scaleY);
context.arc(0, 0, r, theta, theta + dTheta, 1 - fs);
context.scale(1 / scaleX, 1 / scaleY);
context.rotate(-psi);
context.translate(-cx, -cy);
break;
case 'z':
context.closePath();
closedPath = true;
break;
}
}
if (closedPath) {
context.fillStrokeShape(this);
}
else {
context.strokeShape(this);
}
},
getSelfRect: function() {
var points = [];
this.dataArray.forEach(function(data) {
points = points.concat(data.points);
});
var minX = points[0];
var maxX = points[0];
var minY = points[1];
var maxY = points[1];
var x, y;
for (var i = 0; i < points.length / 2; i++) {
x = points[i * 2]; y = points[i * 2 + 1];
minX = Math.min(minX, x);
maxX = Math.max(maxX, x);
minY = Math.min(minY, y);
maxY = Math.max(maxY, y);
}
return {
x: Math.round(minX),
y: Math.round(minY),
width: Math.round(maxX - minX),
height: Math.round(maxY - minY)
};
}
};
Konva.Util.extend(Konva.Path, Konva.Shape);
Konva.Path.getLineLength = function(x1, y1, x2, y2) {
return Math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1));
};
Konva.Path.getPointOnLine = function(dist, P1x, P1y, P2x, P2y, fromX, fromY) {
if(fromX === undefined) {
fromX = P1x;
}
if(fromY === undefined) {
fromY = P1y;
}
var m = (P2y - P1y) / ((P2x - P1x) + 0.00000001);
var run = Math.sqrt(dist * dist / (1 + m * m));
if(P2x < P1x) {
run *= -1;
}
var rise = m * run;
var pt;
if (P2x === P1x) { // vertical line
pt = {
x: fromX,
y: fromY + rise
};
} else if((fromY - P1y) / ((fromX - P1x) + 0.00000001) === m) {
pt = {
x: fromX + run,
y: fromY + rise
};
}
else {
var ix, iy;
var len = this.getLineLength(P1x, P1y, P2x, P2y);
if(len < 0.00000001) {
return undefined;
}
var u = (((fromX - P1x) * (P2x - P1x)) + ((fromY - P1y) * (P2y - P1y)));
u = u / (len * len);
ix = P1x + u * (P2x - P1x);
iy = P1y + u * (P2y - P1y);
var pRise = this.getLineLength(fromX, fromY, ix, iy);
var pRun = Math.sqrt(dist * dist - pRise * pRise);
run = Math.sqrt(pRun * pRun / (1 + m * m));
if(P2x < P1x) {
run *= -1;
}
rise = m * run;
pt = {
x: ix + run,
y: iy + rise
};
}
return pt;
};
Konva.Path.getPointOnCubicBezier = function(pct, P1x, P1y, P2x, P2y, P3x, P3y, P4x, P4y) {
function CB1(t) {
return t * t * t;
}
function CB2(t) {
return 3 * t * t * (1 - t);
}
function CB3(t) {
return 3 * t * (1 - t) * (1 - t);
}
function CB4(t) {
return (1 - t) * (1 - t) * (1 - t);
}
var x = P4x * CB1(pct) + P3x * CB2(pct) + P2x * CB3(pct) + P1x * CB4(pct);
var y = P4y * CB1(pct) + P3y * CB2(pct) + P2y * CB3(pct) + P1y * CB4(pct);
return {
x: x,
y: y
};
};
Konva.Path.getPointOnQuadraticBezier = function(pct, P1x, P1y, P2x, P2y, P3x, P3y) {
function QB1(t) {
return t * t;
}
function QB2(t) {
return 2 * t * (1 - t);
}
function QB3(t) {
return (1 - t) * (1 - t);
}
var x = P3x * QB1(pct) + P2x * QB2(pct) + P1x * QB3(pct);
var y = P3y * QB1(pct) + P2y * QB2(pct) + P1y * QB3(pct);
return {
x: x,
y: y
};
};
Konva.Path.getPointOnEllipticalArc = function(cx, cy, rx, ry, theta, psi) {
var cosPsi = Math.cos(psi), sinPsi = Math.sin(psi);
var pt = {
x: rx * Math.cos(theta),
y: ry * Math.sin(theta)
};
return {
x: cx + (pt.x * cosPsi - pt.y * sinPsi),
y: cy + (pt.x * sinPsi + pt.y * cosPsi)
};
};
/*
* get parsed data array from the data
* string. V, v, H, h, and l data are converted to
* L data for the purpose of high performance Path
* rendering
*/
Konva.Path.parsePathData = function(data) {
// Path Data Segment must begin with a moveTo
//m (x y)+ Relative moveTo (subsequent points are treated as lineTo)
//M (x y)+ Absolute moveTo (subsequent points are treated as lineTo)
//l (x y)+ Relative lineTo
//L (x y)+ Absolute LineTo
//h (x)+ Relative horizontal lineTo
//H (x)+ Absolute horizontal lineTo
//v (y)+ Relative vertical lineTo
//V (y)+ Absolute vertical lineTo
//z (closepath)
//Z (closepath)
//c (x1 y1 x2 y2 x y)+ Relative Bezier curve
//C (x1 y1 x2 y2 x y)+ Absolute Bezier curve
//q (x1 y1 x y)+ Relative Quadratic Bezier
//Q (x1 y1 x y)+ Absolute Quadratic Bezier
//t (x y)+ Shorthand/Smooth Relative Quadratic Bezier
//T (x y)+ Shorthand/Smooth Absolute Quadratic Bezier
//s (x2 y2 x y)+ Shorthand/Smooth Relative Bezier curve
//S (x2 y2 x y)+ Shorthand/Smooth Absolute Bezier curve
//a (rx ry x-axis-rotation large-arc-flag sweep-flag x y)+ Relative Elliptical Arc
//A (rx ry x-axis-rotation large-arc-flag sweep-flag x y)+ Absolute Elliptical Arc
// return early if data is not defined
if(!data) {
return [];
}
// command string
var cs = data;
// command chars
var cc = ['m', 'M', 'l', 'L', 'v', 'V', 'h', 'H', 'z', 'Z', 'c', 'C', 'q', 'Q', 't', 'T', 's', 'S', 'a', 'A'];
// convert white spaces to commas
cs = cs.replace(new RegExp(' ', 'g'), ',');
// create pipes so that we can split the data
for(var n = 0; n < cc.length; n++) {
cs = cs.replace(new RegExp(cc[n], 'g'), '|' + cc[n]);
}
// create array
var arr = cs.split('|');
var ca = [];
// init context point
var cpx = 0;
var cpy = 0;
for( n = 1; n < arr.length; n++) {
var str = arr[n];
var c = str.charAt(0);
str = str.slice(1);
// remove ,- for consistency
str = str.replace(new RegExp(',-', 'g'), '-');
// add commas so that it's easy to split
str = str.replace(new RegExp('-', 'g'), ',-');
str = str.replace(new RegExp('e,-', 'g'), 'e-');
var p = str.split(',');
if(p.length > 0 && p[0] === '') {
p.shift();
}
// convert strings to floats
for(var i = 0; i < p.length; i++) {
p[i] = parseFloat(p[i]);
}
while(p.length > 0) {
if(isNaN(p[0])) {// case for a trailing comma before next command
break;
}
var cmd = null;
var points = [];
var startX = cpx, startY = cpy;
// Move var from within the switch to up here (jshint)
var prevCmd, ctlPtx, ctlPty; // Ss, Tt
var rx, ry, psi, fa, fs, x1, y1; // Aa
// convert l, H, h, V, and v to L
switch (c) {
// Note: Keep the lineTo's above the moveTo's in this switch
case 'l':
cpx += p.shift();
cpy += p.shift();
cmd = 'L';
points.push(cpx, cpy);
break;
case 'L':
cpx = p.shift();
cpy = p.shift();
points.push(cpx, cpy);
break;
// Note: lineTo handlers need to be above this point
case 'm':
var dx = p.shift();
var dy = p.shift();
cpx += dx;
cpy += dy;
cmd = 'M';
// After closing the path move the current position
// to the the first point of the path (if any).
if(ca.length > 2 && ca[ca.length - 1].command === 'z'){
for(var idx = ca.length - 2; idx >= 0; idx--){
if(ca[idx].command === 'M'){
cpx = ca[idx].points[0] + dx;
cpy = ca[idx].points[1] + dy;
break;
}
}
}
points.push(cpx, cpy);
c = 'l';
// subsequent points are treated as relative lineTo
break;
case 'M':
cpx = p.shift();
cpy = p.shift();
cmd = 'M';
points.push(cpx, cpy);
c = 'L';
// subsequent points are treated as absolute lineTo
break;
case 'h':
cpx += p.shift();
cmd = 'L';
points.push(cpx, cpy);
break;
case 'H':
cpx = p.shift();
cmd = 'L';
points.push(cpx, cpy);
break;
case 'v':
cpy += p.shift();
cmd = 'L';
points.push(cpx, cpy);
break;
case 'V':
cpy = p.shift();
cmd = 'L';
points.push(cpx, cpy);
break;
case 'C':
points.push(p.shift(), p.shift(), p.shift(), p.shift());
cpx = p.shift();
cpy = p.shift();
points.push(cpx, cpy);
break;
case 'c':
points.push(cpx + p.shift(), cpy + p.shift(), cpx + p.shift(), cpy + p.shift());
cpx += p.shift();
cpy += p.shift();
cmd = 'C';
points.push(cpx, cpy);
break;
case 'S':
ctlPtx = cpx;
ctlPty = cpy;
prevCmd = ca[ca.length - 1];
if(prevCmd.command === 'C') {
ctlPtx = cpx + (cpx - prevCmd.points[2]);
ctlPty = cpy + (cpy - prevCmd.points[3]);
}
points.push(ctlPtx, ctlPty, p.shift(), p.shift());
cpx = p.shift();
cpy = p.shift();
cmd = 'C';
points.push(cpx, cpy);
break;
case 's':
ctlPtx = cpx;
ctlPty = cpy;
prevCmd = ca[ca.length - 1];
if(prevCmd.command === 'C') {
ctlPtx = cpx + (cpx - prevCmd.points[2]);
ctlPty = cpy + (cpy - prevCmd.points[3]);
}
points.push(ctlPtx, ctlPty, cpx + p.shift(), cpy + p.shift());
cpx += p.shift();
cpy += p.shift();
cmd = 'C';
points.push(cpx, cpy);
break;
case 'Q':
points.push(p.shift(), p.shift());
cpx = p.shift();
cpy = p.shift();
points.push(cpx, cpy);
break;
case 'q':
points.push(cpx + p.shift(), cpy + p.shift());
cpx += p.shift();
cpy += p.shift();
cmd = 'Q';
points.push(cpx, cpy);
break;
case 'T':
ctlPtx = cpx;
ctlPty = cpy;
prevCmd = ca[ca.length - 1];
if(prevCmd.command === 'Q') {
ctlPtx = cpx + (cpx - prevCmd.points[0]);
ctlPty = cpy + (cpy - prevCmd.points[1]);
}
cpx = p.shift();
cpy = p.shift();
cmd = 'Q';
points.push(ctlPtx, ctlPty, cpx, cpy);
break;
case 't':
ctlPtx = cpx;
ctlPty = cpy;
prevCmd = ca[ca.length - 1];
if(prevCmd.command === 'Q') {
ctlPtx = cpx + (cpx - prevCmd.points[0]);
ctlPty = cpy + (cpy - prevCmd.points[1]);
}
cpx += p.shift();
cpy += p.shift();
cmd = 'Q';
points.push(ctlPtx, ctlPty, cpx, cpy);
break;
case 'A':
rx = p.shift();
ry = p.shift();
psi = p.shift();
fa = p.shift();
fs = p.shift();
x1 = cpx;
y1 = cpy;
cpx = p.shift();
cpy = p.shift();
cmd = 'A';
points = this.convertEndpointToCenterParameterization(x1, y1, cpx, cpy, fa, fs, rx, ry, psi);
break;
case 'a':
rx = p.shift();
ry = p.shift();
psi = p.shift();
fa = p.shift();
fs = p.shift();
x1 = cpx;
y1 = cpy; cpx += p.shift();
cpy += p.shift();
cmd = 'A';
points = this.convertEndpointToCenterParameterization(x1, y1, cpx, cpy, fa, fs, rx, ry, psi);
break;
}
ca.push({
command: cmd || c,
points: points,
start: {
x: startX,
y: startY
},
pathLength: this.calcLength(startX, startY, cmd || c, points)
});
}
if(c === 'z' || c === 'Z') {
ca.push({
command: 'z',
points: [],
start: undefined,
pathLength: 0
});
}
}
return ca;
};
Konva.Path.calcLength = function(x, y, cmd, points) {
var len, p1, p2, t;
var path = Konva.Path;
switch (cmd) {
case 'L':
return path.getLineLength(x, y, points[0], points[1]);
case 'C':
// Approximates by breaking curve into 100 line segments
len = 0.0;
p1 = path.getPointOnCubicBezier(0, x, y, points[0], points[1], points[2], points[3], points[4], points[5]);
for( t = 0.01; t <= 1; t += 0.01) {
p2 = path.getPointOnCubicBezier(t, x, y, points[0], points[1], points[2], points[3], points[4], points[5]);
len += path.getLineLength(p1.x, p1.y, p2.x, p2.y);
p1 = p2;
}
return len;
case 'Q':
// Approximates by breaking curve into 100 line segments
len = 0.0;
p1 = path.getPointOnQuadraticBezier(0, x, y, points[0], points[1], points[2], points[3]);
for( t = 0.01; t <= 1; t += 0.01) {
p2 = path.getPointOnQuadraticBezier(t, x, y, points[0], points[1], points[2], points[3]);
len += path.getLineLength(p1.x, p1.y, p2.x, p2.y);
p1 = p2;
}
return len;
case 'A':
// Approximates by breaking curve into line segments
len = 0.0;
var start = points[4];
// 4 = theta
var dTheta = points[5];
// 5 = dTheta
var end = points[4] + dTheta;
var inc = Math.PI / 180.0;
// 1 degree resolution
if(Math.abs(start - end) < inc) {
inc = Math.abs(start - end);
}
// Note: for purpose of calculating arc length, not going to worry about rotating X-axis by angle psi
p1 = path.getPointOnEllipticalArc(points[0], points[1], points[2], points[3], start, 0);
if(dTheta < 0) {// clockwise
for( t = start - inc; t > end; t -= inc) {
p2 = path.getPointOnEllipticalArc(points[0], points[1], points[2], points[3], t, 0);
len += path.getLineLength(p1.x, p1.y, p2.x, p2.y);
p1 = p2;
}
}
else {// counter-clockwise
for( t = start + inc; t < end; t += inc) {
p2 = path.getPointOnEllipticalArc(points[0], points[1], points[2], points[3], t, 0);
len += path.getLineLength(p1.x, p1.y, p2.x, p2.y);
p1 = p2;
}
}
p2 = path.getPointOnEllipticalArc(points[0], points[1], points[2], points[3], end, 0);
len += path.getLineLength(p1.x, p1.y, p2.x, p2.y);
return len;
}
return 0;
};
Konva.Path.convertEndpointToCenterParameterization = function(x1, y1, x2, y2, fa, fs, rx, ry, psiDeg) {
// Derived from: http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
var psi = psiDeg * (Math.PI / 180.0);
var xp = Math.cos(psi) * (x1 - x2) / 2.0 + Math.sin(psi) * (y1 - y2) / 2.0;
var yp = -1 * Math.sin(psi) * (x1 - x2) / 2.0 + Math.cos(psi) * (y1 - y2) / 2.0;
var lambda = (xp * xp) / (rx * rx) + (yp * yp) / (ry * ry);
if(lambda > 1) {
rx *= Math.sqrt(lambda);
ry *= Math.sqrt(lambda);
}
var f = Math.sqrt((((rx * rx) * (ry * ry)) - ((rx * rx) * (yp * yp)) - ((ry * ry) * (xp * xp))) / ((rx * rx) * (yp * yp) + (ry * ry) * (xp * xp)));
if(fa === fs) {
f *= -1;
}
if(isNaN(f)) {
f = 0;
}
var cxp = f * rx * yp / ry;
var cyp = f * -ry * xp / rx;
var cx = (x1 + x2) / 2.0 + Math.cos(psi) * cxp - Math.sin(psi) * cyp;
var cy = (y1 + y2) / 2.0 + Math.sin(psi) * cxp + Math.cos(psi) * cyp;
var vMag = function(v) {
return Math.sqrt(v[0] * v[0] + v[1] * v[1]);
};
var vRatio = function(u, v) {
return (u[0] * v[0] + u[1] * v[1]) / (vMag(u) * vMag(v));
};
var vAngle = function(u, v) {
return (u[0] * v[1] < u[1] * v[0] ? -1 : 1) * Math.acos(vRatio(u, v));
};
var theta = vAngle([1, 0], [(xp - cxp) / rx, (yp - cyp) / ry]);
var u = [(xp - cxp) / rx, (yp - cyp) / ry];
var v = [(-1 * xp - cxp) / rx, (-1 * yp - cyp) / ry];
var dTheta = vAngle(u, v);
if(vRatio(u, v) <= -1) {
dTheta = Math.PI;
}
if(vRatio(u, v) >= 1) {
dTheta = 0;
}
if(fs === 0 && dTheta > 0) {
dTheta = dTheta - 2 * Math.PI;
}
if(fs === 1 && dTheta < 0) {
dTheta = dTheta + 2 * Math.PI;
}
return [cx, cy, rx, ry, theta, dTheta, psi, fs];
};
// add getters setters
Konva.Factory.addGetterSetter(Konva.Path, 'data');
/**
* set SVG path data string. This method
* also automatically parses the data string
* into a data array. Currently supported SVG data:
* M, m, L, l, H, h, V, v, Q, q, T, t, C, c, S, s, A, a, Z, z
* @name setData
* @method
* @memberof Konva.Path.prototype
* @param {String} SVG path command string
*/
/**
* get SVG path data string
* @name getData
* @method
* @memberof Konva.Path.prototype
*/
Konva.Collection.mapMethods(Konva.Path);
})();