support aggregation functions

This commit is contained in:
chrislu
2025-09-01 11:15:00 -07:00
parent cbf1bfd333
commit 32e73811f2

View File

@@ -168,9 +168,11 @@ func (e *SQLEngine) executeSelectStatement(ctx context.Context, stmt *sqlparser.
return e.executeSelectWithSampleData(ctx, stmt, database, tableName)
}
// Parse SELECT columns
// Parse SELECT columns and detect aggregation functions
var columns []string
var aggregations []AggregationSpec
selectAll := false
hasAggregations := false
for _, selectExpr := range stmt.SelectExprs {
switch expr := selectExpr.(type) {
@@ -180,6 +182,14 @@ func (e *SQLEngine) executeSelectStatement(ctx context.Context, stmt *sqlparser.
switch col := expr.Expr.(type) {
case *sqlparser.ColName:
columns = append(columns, col.Name.String())
case *sqlparser.FuncExpr:
// Handle aggregation functions
aggSpec, err := e.parseAggregationFunction(col, expr)
if err != nil {
return &QueryResult{Error: err}, err
}
aggregations = append(aggregations, *aggSpec)
hasAggregations = true
default:
err := fmt.Errorf("unsupported SELECT expression: %T", col)
return &QueryResult{Error: err}, err
@@ -190,6 +200,11 @@ func (e *SQLEngine) executeSelectStatement(ctx context.Context, stmt *sqlparser.
}
}
// If we have aggregations, use aggregation query path
if hasAggregations {
return e.executeAggregationQuery(ctx, hybridScanner, aggregations, stmt)
}
// Parse WHERE clause for predicate pushdown
var predicate func(*schema_pb.RecordValue) bool
if stmt.Where != nil {
@@ -988,6 +1003,338 @@ func (e *SQLEngine) dropTable(ctx context.Context, stmt *sqlparser.DDL) (*QueryR
return result, nil
}
// AggregationSpec defines an aggregation function to be computed
type AggregationSpec struct {
Function string // COUNT, SUM, AVG, MIN, MAX
Column string // Column name, or "*" for COUNT(*)
Alias string // Optional alias for the result column
}
// AggregationResult holds the computed result of an aggregation
type AggregationResult struct {
Count int64
Sum float64
Min interface{}
Max interface{}
}
// parseAggregationFunction parses an aggregation function expression
func (e *SQLEngine) parseAggregationFunction(funcExpr *sqlparser.FuncExpr, aliasExpr *sqlparser.AliasedExpr) (*AggregationSpec, error) {
funcName := strings.ToUpper(funcExpr.Name.String())
// Get alias name if specified
alias := funcName // Default alias is the function name
if !aliasExpr.As.IsEmpty() {
alias = aliasExpr.As.String()
}
spec := &AggregationSpec{
Function: funcName,
Alias: alias,
}
// Parse function arguments
switch funcName {
case "COUNT":
if len(funcExpr.Exprs) != 1 {
return nil, fmt.Errorf("COUNT function expects exactly 1 argument")
}
switch arg := funcExpr.Exprs[0].(type) {
case *sqlparser.StarExpr:
spec.Column = "*"
case *sqlparser.AliasedExpr:
if colName, ok := arg.Expr.(*sqlparser.ColName); ok {
spec.Column = colName.Name.String()
} else {
return nil, fmt.Errorf("COUNT argument must be a column name or *")
}
default:
return nil, fmt.Errorf("unsupported COUNT argument: %T", arg)
}
case "SUM", "AVG", "MIN", "MAX":
if len(funcExpr.Exprs) != 1 {
return nil, fmt.Errorf("%s function expects exactly 1 argument", funcName)
}
switch arg := funcExpr.Exprs[0].(type) {
case *sqlparser.AliasedExpr:
if colName, ok := arg.Expr.(*sqlparser.ColName); ok {
spec.Column = colName.Name.String()
} else {
return nil, fmt.Errorf("%s argument must be a column name", funcName)
}
default:
return nil, fmt.Errorf("unsupported %s argument: %T", funcName, arg)
}
default:
return nil, fmt.Errorf("unsupported aggregation function: %s", funcName)
}
return spec, nil
}
// executeAggregationQuery handles SELECT queries with aggregation functions
func (e *SQLEngine) executeAggregationQuery(ctx context.Context, hybridScanner *HybridMessageScanner, aggregations []AggregationSpec, stmt *sqlparser.Select) (*QueryResult, error) {
// Parse WHERE clause for filtering
var predicate func(*schema_pb.RecordValue) bool
var err error
if stmt.Where != nil {
predicate, err = e.buildPredicate(stmt.Where.Expr)
if err != nil {
return &QueryResult{Error: err}, err
}
}
// Extract time filters for optimization
startTimeNs, stopTimeNs := int64(0), int64(0)
if stmt.Where != nil {
startTimeNs, stopTimeNs = e.extractTimeFilters(stmt.Where.Expr)
}
// Build scan options for full table scan (aggregations need all data)
hybridScanOptions := HybridScanOptions{
StartTimeNs: startTimeNs,
StopTimeNs: stopTimeNs,
Limit: 0, // No limit for aggregations - need all data
Predicate: predicate,
}
// Execute the hybrid scan to get all matching records
results, err := hybridScanner.Scan(ctx, hybridScanOptions)
if err != nil {
return &QueryResult{Error: err}, err
}
// Compute aggregations
aggResults := e.computeAggregations(results, aggregations)
// Build result set
columns := make([]string, len(aggregations))
row := make([]sqltypes.Value, len(aggregations))
for i, spec := range aggregations {
columns[i] = spec.Alias
row[i] = e.formatAggregationResult(spec, aggResults[i])
}
return &QueryResult{
Columns: columns,
Rows: [][]sqltypes.Value{row},
}, nil
}
// computeAggregations computes aggregation functions over the scan results
func (e *SQLEngine) computeAggregations(results []HybridScanResult, aggregations []AggregationSpec) []AggregationResult {
aggResults := make([]AggregationResult, len(aggregations))
for i, spec := range aggregations {
switch spec.Function {
case "COUNT":
if spec.Column == "*" {
// COUNT(*) counts all rows
aggResults[i].Count = int64(len(results))
} else {
// COUNT(column) counts non-null values
count := int64(0)
for _, result := range results {
if value, exists := result.Values[spec.Column]; exists && value != nil {
if !e.isNullValue(value) {
count++
}
}
}
aggResults[i].Count = count
}
case "SUM":
sum := float64(0)
for _, result := range results {
if value, exists := result.Values[spec.Column]; exists && value != nil {
if numValue := e.convertToNumber(value); numValue != nil {
sum += *numValue
}
}
}
aggResults[i].Sum = sum
case "AVG":
sum := float64(0)
count := int64(0)
for _, result := range results {
if value, exists := result.Values[spec.Column]; exists && value != nil {
if numValue := e.convertToNumber(value); numValue != nil {
sum += *numValue
count++
}
}
}
if count > 0 {
aggResults[i].Sum = sum / float64(count) // Store average in Sum field
aggResults[i].Count = count
}
case "MIN":
var min interface{}
for _, result := range results {
if value, exists := result.Values[spec.Column]; exists && value != nil {
if min == nil || e.compareValues(value, min) < 0 {
min = e.extractRawValue(value)
}
}
}
aggResults[i].Min = min
case "MAX":
var max interface{}
for _, result := range results {
if value, exists := result.Values[spec.Column]; exists && value != nil {
if max == nil || e.compareValues(value, max) > 0 {
max = e.extractRawValue(value)
}
}
}
aggResults[i].Max = max
}
}
return aggResults
}
// Helper functions for aggregation processing
func (e *SQLEngine) isNullValue(value *schema_pb.Value) bool {
return value == nil || value.Kind == nil
}
func (e *SQLEngine) convertToNumber(value *schema_pb.Value) *float64 {
switch v := value.Kind.(type) {
case *schema_pb.Value_Int32Value:
result := float64(v.Int32Value)
return &result
case *schema_pb.Value_Int64Value:
result := float64(v.Int64Value)
return &result
case *schema_pb.Value_FloatValue:
result := float64(v.FloatValue)
return &result
case *schema_pb.Value_DoubleValue:
return &v.DoubleValue
}
return nil
}
func (e *SQLEngine) extractRawValue(value *schema_pb.Value) interface{} {
switch v := value.Kind.(type) {
case *schema_pb.Value_Int32Value:
return v.Int32Value
case *schema_pb.Value_Int64Value:
return v.Int64Value
case *schema_pb.Value_FloatValue:
return v.FloatValue
case *schema_pb.Value_DoubleValue:
return v.DoubleValue
case *schema_pb.Value_StringValue:
return v.StringValue
case *schema_pb.Value_BoolValue:
return v.BoolValue
}
return nil
}
func (e *SQLEngine) compareValues(value1 *schema_pb.Value, value2 interface{}) int {
raw1 := e.extractRawValue(value1)
if raw1 == nil {
return -1
}
// Simple comparison - in a full implementation this would handle type coercion
switch v1 := raw1.(type) {
case int32:
if v2, ok := value2.(int32); ok {
if v1 < v2 {
return -1
} else if v1 > v2 {
return 1
}
return 0
}
case int64:
if v2, ok := value2.(int64); ok {
if v1 < v2 {
return -1
} else if v1 > v2 {
return 1
}
return 0
}
case float64:
if v2, ok := value2.(float64); ok {
if v1 < v2 {
return -1
} else if v1 > v2 {
return 1
}
return 0
}
case string:
if v2, ok := value2.(string); ok {
if v1 < v2 {
return -1
} else if v1 > v2 {
return 1
}
return 0
}
}
return 0
}
func (e *SQLEngine) formatAggregationResult(spec AggregationSpec, result AggregationResult) sqltypes.Value {
switch spec.Function {
case "COUNT":
return sqltypes.NewInt64(result.Count)
case "SUM":
return sqltypes.NewFloat64(result.Sum)
case "AVG":
return sqltypes.NewFloat64(result.Sum) // Sum contains the average for AVG
case "MIN":
if result.Min != nil {
return e.convertRawValueToSQL(result.Min)
}
return sqltypes.NULL
case "MAX":
if result.Max != nil {
return e.convertRawValueToSQL(result.Max)
}
return sqltypes.NULL
}
return sqltypes.NULL
}
func (e *SQLEngine) convertRawValueToSQL(value interface{}) sqltypes.Value {
switch v := value.(type) {
case int32:
return sqltypes.NewInt32(v)
case int64:
return sqltypes.NewInt64(v)
case float32:
return sqltypes.NewFloat32(v)
case float64:
return sqltypes.NewFloat64(v)
case string:
return sqltypes.NewVarChar(v)
case bool:
if v {
return sqltypes.NewVarChar("1")
}
return sqltypes.NewVarChar("0")
}
return sqltypes.NULL
}
// discoverAndRegisterTopic attempts to discover an existing topic and register it in the SQL catalog
func (e *SQLEngine) discoverAndRegisterTopic(ctx context.Context, database, tableName string) error {
// First, check if topic exists by trying to get its schema from the broker/filer