Admin: misc improvements on admin server and workers. EC now works. (#7055)

* initial design

* added simulation as tests

* reorganized the codebase to move the simulation framework and tests into their own dedicated package

* integration test. ec worker task

* remove "enhanced" reference

* start master, volume servers, filer

Current Status
 Master: Healthy and running (port 9333)
 Filer: Healthy and running (port 8888)
 Volume Servers: All 6 servers running (ports 8080-8085)
🔄 Admin/Workers: Will start when dependencies are ready

* generate write load

* tasks are assigned

* admin start wtih grpc port. worker has its own working directory

* Update .gitignore

* working worker and admin. Task detection is not working yet.

* compiles, detection uses volumeSizeLimitMB from master

* compiles

* worker retries connecting to admin

* build and restart

* rendering pending tasks

* skip task ID column

* sticky worker id

* test canScheduleTaskNow

* worker reconnect to admin

* clean up logs

* worker register itself first

* worker can run ec work and report status

but:
1. one volume should not be repeatedly worked on.
2. ec shards needs to be distributed and source data should be deleted.

* move ec task logic

* listing ec shards

* local copy, ec. Need to distribute.

* ec is mostly working now

* distribution of ec shards needs improvement
* need configuration to enable ec

* show ec volumes

* interval field UI component

* rename

* integration test with vauuming

* garbage percentage threshold

* fix warning

* display ec shard sizes

* fix ec volumes list

* Update ui.go

* show default values

* ensure correct default value

* MaintenanceConfig use ConfigField

* use schema defined defaults

* config

* reduce duplication

* refactor to use BaseUIProvider

* each task register its schema

* checkECEncodingCandidate use ecDetector

* use vacuumDetector

* use volumeSizeLimitMB

* remove

remove

* remove unused

* refactor

* use new framework

* remove v2 reference

* refactor

* left menu can scroll now

* The maintenance manager was not being initialized when no data directory was configured for persistent storage.

* saving config

* Update task_config_schema_templ.go

* enable/disable tasks

* protobuf encoded task configurations

* fix system settings

* use ui component

* remove logs

* interface{} Reduction

* reduce interface{}

* reduce interface{}

* avoid from/to map

* reduce interface{}

* refactor

* keep it DRY

* added logging

* debug messages

* debug level

* debug

* show the log caller line

* use configured task policy

* log level

* handle admin heartbeat response

* Update worker.go

* fix EC rack and dc count

* Report task status to admin server

* fix task logging, simplify interface checking, use erasure_coding constants

* factor in empty volume server during task planning

* volume.list adds disk id

* track disk id also

* fix locking scheduled and manual scanning

* add active topology

* simplify task detector

* ec task completed, but shards are not showing up

* implement ec in ec_typed.go

* adjust log level

* dedup

* implementing ec copying shards and only ecx files

* use disk id when distributing ec shards

🎯 Planning: ActiveTopology creates DestinationPlan with specific TargetDisk
📦 Task Creation: maintenance_integration.go creates ECDestination with DiskId
🚀 Task Execution: EC task passes DiskId in VolumeEcShardsCopyRequest
💾 Volume Server: Receives disk_id and stores shards on specific disk (vs.store.Locations[req.DiskId])
📂 File System: EC shards and metadata land in the exact disk directory planned

* Delete original volume from all locations

* clean up existing shard locations

* local encoding and distributing

* Update docker/admin_integration/EC-TESTING-README.md

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>

* check volume id range

* simplify

* fix tests

* fix types

* clean up logs and tests

---------

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
Chris Lu
2025-07-30 12:38:03 -07:00
committed by GitHub
parent 64198dad83
commit 891a2fb6eb
130 changed files with 27737 additions and 4429 deletions

View File

@@ -0,0 +1,741 @@
package topology
import (
"fmt"
"sync"
"time"
"github.com/seaweedfs/seaweedfs/weed/glog"
"github.com/seaweedfs/seaweedfs/weed/pb/master_pb"
)
// TaskType represents different types of maintenance operations
type TaskType string
// TaskStatus represents the current status of a task
type TaskStatus string
// Common task type constants
const (
TaskTypeVacuum TaskType = "vacuum"
TaskTypeBalance TaskType = "balance"
TaskTypeErasureCoding TaskType = "erasure_coding"
TaskTypeReplication TaskType = "replication"
)
// Common task status constants
const (
TaskStatusPending TaskStatus = "pending"
TaskStatusInProgress TaskStatus = "in_progress"
TaskStatusCompleted TaskStatus = "completed"
)
// taskState represents the current state of tasks affecting the topology (internal)
type taskState struct {
VolumeID uint32 `json:"volume_id"`
TaskType TaskType `json:"task_type"`
SourceServer string `json:"source_server"`
SourceDisk uint32 `json:"source_disk"`
TargetServer string `json:"target_server,omitempty"`
TargetDisk uint32 `json:"target_disk,omitempty"`
Status TaskStatus `json:"status"`
StartedAt time.Time `json:"started_at"`
CompletedAt time.Time `json:"completed_at,omitempty"`
}
// DiskInfo represents a disk with its current state and ongoing tasks (public for external access)
type DiskInfo struct {
NodeID string `json:"node_id"`
DiskID uint32 `json:"disk_id"`
DiskType string `json:"disk_type"`
DataCenter string `json:"data_center"`
Rack string `json:"rack"`
DiskInfo *master_pb.DiskInfo `json:"disk_info"`
LoadCount int `json:"load_count"` // Number of active tasks
}
// activeDisk represents internal disk state (private)
type activeDisk struct {
*DiskInfo
pendingTasks []*taskState
assignedTasks []*taskState
recentTasks []*taskState // Completed in last N seconds
}
// activeNode represents a node with its disks (private)
type activeNode struct {
nodeID string
dataCenter string
rack string
nodeInfo *master_pb.DataNodeInfo
disks map[uint32]*activeDisk // DiskID -> activeDisk
}
// ActiveTopology provides a real-time view of cluster state with task awareness
type ActiveTopology struct {
// Core topology from master
topologyInfo *master_pb.TopologyInfo
lastUpdated time.Time
// Structured topology for easy access (private)
nodes map[string]*activeNode // NodeID -> activeNode
disks map[string]*activeDisk // "NodeID:DiskID" -> activeDisk
// Task states affecting the topology (private)
pendingTasks map[string]*taskState
assignedTasks map[string]*taskState
recentTasks map[string]*taskState
// Configuration
recentTaskWindowSeconds int
// Synchronization
mutex sync.RWMutex
}
// NewActiveTopology creates a new ActiveTopology instance
func NewActiveTopology(recentTaskWindowSeconds int) *ActiveTopology {
if recentTaskWindowSeconds <= 0 {
recentTaskWindowSeconds = 10 // Default 10 seconds
}
return &ActiveTopology{
nodes: make(map[string]*activeNode),
disks: make(map[string]*activeDisk),
pendingTasks: make(map[string]*taskState),
assignedTasks: make(map[string]*taskState),
recentTasks: make(map[string]*taskState),
recentTaskWindowSeconds: recentTaskWindowSeconds,
}
}
// UpdateTopology updates the topology information from master
func (at *ActiveTopology) UpdateTopology(topologyInfo *master_pb.TopologyInfo) error {
at.mutex.Lock()
defer at.mutex.Unlock()
at.topologyInfo = topologyInfo
at.lastUpdated = time.Now()
// Rebuild structured topology
at.nodes = make(map[string]*activeNode)
at.disks = make(map[string]*activeDisk)
for _, dc := range topologyInfo.DataCenterInfos {
for _, rack := range dc.RackInfos {
for _, nodeInfo := range rack.DataNodeInfos {
node := &activeNode{
nodeID: nodeInfo.Id,
dataCenter: dc.Id,
rack: rack.Id,
nodeInfo: nodeInfo,
disks: make(map[uint32]*activeDisk),
}
// Add disks for this node
for diskType, diskInfo := range nodeInfo.DiskInfos {
disk := &activeDisk{
DiskInfo: &DiskInfo{
NodeID: nodeInfo.Id,
DiskID: diskInfo.DiskId,
DiskType: diskType,
DataCenter: dc.Id,
Rack: rack.Id,
DiskInfo: diskInfo,
},
}
diskKey := fmt.Sprintf("%s:%d", nodeInfo.Id, diskInfo.DiskId)
node.disks[diskInfo.DiskId] = disk
at.disks[diskKey] = disk
}
at.nodes[nodeInfo.Id] = node
}
}
}
// Reassign task states to updated topology
at.reassignTaskStates()
glog.V(1).Infof("ActiveTopology updated: %d nodes, %d disks", len(at.nodes), len(at.disks))
return nil
}
// AddPendingTask adds a pending task to the topology
func (at *ActiveTopology) AddPendingTask(taskID string, taskType TaskType, volumeID uint32,
sourceServer string, sourceDisk uint32, targetServer string, targetDisk uint32) {
at.mutex.Lock()
defer at.mutex.Unlock()
task := &taskState{
VolumeID: volumeID,
TaskType: taskType,
SourceServer: sourceServer,
SourceDisk: sourceDisk,
TargetServer: targetServer,
TargetDisk: targetDisk,
Status: TaskStatusPending,
StartedAt: time.Now(),
}
at.pendingTasks[taskID] = task
at.assignTaskToDisk(task)
}
// AssignTask moves a task from pending to assigned
func (at *ActiveTopology) AssignTask(taskID string) error {
at.mutex.Lock()
defer at.mutex.Unlock()
task, exists := at.pendingTasks[taskID]
if !exists {
return fmt.Errorf("pending task %s not found", taskID)
}
delete(at.pendingTasks, taskID)
task.Status = TaskStatusInProgress
at.assignedTasks[taskID] = task
at.reassignTaskStates()
return nil
}
// CompleteTask moves a task from assigned to recent
func (at *ActiveTopology) CompleteTask(taskID string) error {
at.mutex.Lock()
defer at.mutex.Unlock()
task, exists := at.assignedTasks[taskID]
if !exists {
return fmt.Errorf("assigned task %s not found", taskID)
}
delete(at.assignedTasks, taskID)
task.Status = TaskStatusCompleted
task.CompletedAt = time.Now()
at.recentTasks[taskID] = task
at.reassignTaskStates()
// Clean up old recent tasks
at.cleanupRecentTasks()
return nil
}
// GetAvailableDisks returns disks that can accept new tasks of the given type
func (at *ActiveTopology) GetAvailableDisks(taskType TaskType, excludeNodeID string) []*DiskInfo {
at.mutex.RLock()
defer at.mutex.RUnlock()
var available []*DiskInfo
for _, disk := range at.disks {
if disk.NodeID == excludeNodeID {
continue // Skip excluded node
}
if at.isDiskAvailable(disk, taskType) {
// Create a copy with current load count
diskCopy := *disk.DiskInfo
diskCopy.LoadCount = len(disk.pendingTasks) + len(disk.assignedTasks)
available = append(available, &diskCopy)
}
}
return available
}
// GetDiskLoad returns the current load on a disk (number of active tasks)
func (at *ActiveTopology) GetDiskLoad(nodeID string, diskID uint32) int {
at.mutex.RLock()
defer at.mutex.RUnlock()
diskKey := fmt.Sprintf("%s:%d", nodeID, diskID)
disk, exists := at.disks[diskKey]
if !exists {
return 0
}
return len(disk.pendingTasks) + len(disk.assignedTasks)
}
// HasRecentTaskForVolume checks if a volume had a recent task (to avoid immediate re-detection)
func (at *ActiveTopology) HasRecentTaskForVolume(volumeID uint32, taskType TaskType) bool {
at.mutex.RLock()
defer at.mutex.RUnlock()
for _, task := range at.recentTasks {
if task.VolumeID == volumeID && task.TaskType == taskType {
return true
}
}
return false
}
// GetAllNodes returns information about all nodes (public interface)
func (at *ActiveTopology) GetAllNodes() map[string]*master_pb.DataNodeInfo {
at.mutex.RLock()
defer at.mutex.RUnlock()
result := make(map[string]*master_pb.DataNodeInfo)
for nodeID, node := range at.nodes {
result[nodeID] = node.nodeInfo
}
return result
}
// GetTopologyInfo returns the current topology information (read-only access)
func (at *ActiveTopology) GetTopologyInfo() *master_pb.TopologyInfo {
at.mutex.RLock()
defer at.mutex.RUnlock()
return at.topologyInfo
}
// GetNodeDisks returns all disks for a specific node
func (at *ActiveTopology) GetNodeDisks(nodeID string) []*DiskInfo {
at.mutex.RLock()
defer at.mutex.RUnlock()
node, exists := at.nodes[nodeID]
if !exists {
return nil
}
var disks []*DiskInfo
for _, disk := range node.disks {
diskCopy := *disk.DiskInfo
diskCopy.LoadCount = len(disk.pendingTasks) + len(disk.assignedTasks)
disks = append(disks, &diskCopy)
}
return disks
}
// DestinationPlan represents a planned destination for a volume/shard operation
type DestinationPlan struct {
TargetNode string `json:"target_node"`
TargetDisk uint32 `json:"target_disk"`
TargetRack string `json:"target_rack"`
TargetDC string `json:"target_dc"`
ExpectedSize uint64 `json:"expected_size"`
PlacementScore float64 `json:"placement_score"`
Conflicts []string `json:"conflicts"`
}
// MultiDestinationPlan represents multiple planned destinations for operations like EC
type MultiDestinationPlan struct {
Plans []*DestinationPlan `json:"plans"`
TotalShards int `json:"total_shards"`
SuccessfulRack int `json:"successful_racks"`
SuccessfulDCs int `json:"successful_dcs"`
}
// PlanBalanceDestination finds the best destination for a balance operation
func (at *ActiveTopology) PlanBalanceDestination(volumeID uint32, sourceNode string, sourceRack string, sourceDC string, volumeSize uint64) (*DestinationPlan, error) {
at.mutex.RLock()
defer at.mutex.RUnlock()
// Get available disks, excluding the source node
availableDisks := at.getAvailableDisksForPlanning(TaskTypeBalance, sourceNode)
if len(availableDisks) == 0 {
return nil, fmt.Errorf("no available disks for balance operation")
}
// Score each disk for balance placement
bestDisk := at.selectBestBalanceDestination(availableDisks, sourceRack, sourceDC, volumeSize)
if bestDisk == nil {
return nil, fmt.Errorf("no suitable destination found for balance operation")
}
return &DestinationPlan{
TargetNode: bestDisk.NodeID,
TargetDisk: bestDisk.DiskID,
TargetRack: bestDisk.Rack,
TargetDC: bestDisk.DataCenter,
ExpectedSize: volumeSize,
PlacementScore: at.calculatePlacementScore(bestDisk, sourceRack, sourceDC),
Conflicts: at.checkPlacementConflicts(bestDisk, TaskTypeBalance),
}, nil
}
// PlanECDestinations finds multiple destinations for EC shard distribution
func (at *ActiveTopology) PlanECDestinations(volumeID uint32, sourceNode string, sourceRack string, sourceDC string, shardsNeeded int) (*MultiDestinationPlan, error) {
at.mutex.RLock()
defer at.mutex.RUnlock()
// Get available disks for EC placement
availableDisks := at.getAvailableDisksForPlanning(TaskTypeErasureCoding, "")
if len(availableDisks) < shardsNeeded {
return nil, fmt.Errorf("insufficient disks for EC placement: need %d, have %d", shardsNeeded, len(availableDisks))
}
// Select best disks for EC placement with rack/DC diversity
selectedDisks := at.selectBestECDestinations(availableDisks, sourceRack, sourceDC, shardsNeeded)
if len(selectedDisks) < shardsNeeded {
return nil, fmt.Errorf("could not find %d suitable destinations for EC placement", shardsNeeded)
}
var plans []*DestinationPlan
rackCount := make(map[string]int)
dcCount := make(map[string]int)
for _, disk := range selectedDisks {
plan := &DestinationPlan{
TargetNode: disk.NodeID,
TargetDisk: disk.DiskID,
TargetRack: disk.Rack,
TargetDC: disk.DataCenter,
ExpectedSize: 0, // EC shards don't have predetermined size
PlacementScore: at.calculatePlacementScore(disk, sourceRack, sourceDC),
Conflicts: at.checkPlacementConflicts(disk, TaskTypeErasureCoding),
}
plans = append(plans, plan)
// Count rack and DC diversity
rackKey := fmt.Sprintf("%s:%s", disk.DataCenter, disk.Rack)
rackCount[rackKey]++
dcCount[disk.DataCenter]++
}
return &MultiDestinationPlan{
Plans: plans,
TotalShards: len(plans),
SuccessfulRack: len(rackCount),
SuccessfulDCs: len(dcCount),
}, nil
}
// getAvailableDisksForPlanning returns disks available for destination planning
func (at *ActiveTopology) getAvailableDisksForPlanning(taskType TaskType, excludeNodeID string) []*activeDisk {
var available []*activeDisk
for _, disk := range at.disks {
if excludeNodeID != "" && disk.NodeID == excludeNodeID {
continue // Skip excluded node
}
if at.isDiskAvailable(disk, taskType) {
available = append(available, disk)
}
}
return available
}
// selectBestBalanceDestination selects the best disk for balance operation
func (at *ActiveTopology) selectBestBalanceDestination(disks []*activeDisk, sourceRack string, sourceDC string, volumeSize uint64) *activeDisk {
if len(disks) == 0 {
return nil
}
var bestDisk *activeDisk
bestScore := -1.0
for _, disk := range disks {
score := at.calculateBalanceScore(disk, sourceRack, sourceDC, volumeSize)
if score > bestScore {
bestScore = score
bestDisk = disk
}
}
return bestDisk
}
// selectBestECDestinations selects multiple disks for EC shard placement with diversity
func (at *ActiveTopology) selectBestECDestinations(disks []*activeDisk, sourceRack string, sourceDC string, shardsNeeded int) []*activeDisk {
if len(disks) == 0 {
return nil
}
// Group disks by rack and DC for diversity
rackGroups := make(map[string][]*activeDisk)
for _, disk := range disks {
rackKey := fmt.Sprintf("%s:%s", disk.DataCenter, disk.Rack)
rackGroups[rackKey] = append(rackGroups[rackKey], disk)
}
var selected []*activeDisk
usedRacks := make(map[string]bool)
// First pass: select one disk from each rack for maximum diversity
for rackKey, rackDisks := range rackGroups {
if len(selected) >= shardsNeeded {
break
}
// Select best disk from this rack
bestDisk := at.selectBestFromRack(rackDisks, sourceRack, sourceDC)
if bestDisk != nil {
selected = append(selected, bestDisk)
usedRacks[rackKey] = true
}
}
// Second pass: if we need more disks, select from racks we've already used
if len(selected) < shardsNeeded {
for _, disk := range disks {
if len(selected) >= shardsNeeded {
break
}
// Skip if already selected
alreadySelected := false
for _, sel := range selected {
if sel.NodeID == disk.NodeID && sel.DiskID == disk.DiskID {
alreadySelected = true
break
}
}
if !alreadySelected && at.isDiskAvailable(disk, TaskTypeErasureCoding) {
selected = append(selected, disk)
}
}
}
return selected
}
// selectBestFromRack selects the best disk from a rack
func (at *ActiveTopology) selectBestFromRack(disks []*activeDisk, sourceRack string, sourceDC string) *activeDisk {
if len(disks) == 0 {
return nil
}
var bestDisk *activeDisk
bestScore := -1.0
for _, disk := range disks {
if !at.isDiskAvailable(disk, TaskTypeErasureCoding) {
continue
}
score := at.calculateECScore(disk, sourceRack, sourceDC)
if score > bestScore {
bestScore = score
bestDisk = disk
}
}
return bestDisk
}
// calculateBalanceScore calculates placement score for balance operations
func (at *ActiveTopology) calculateBalanceScore(disk *activeDisk, sourceRack string, sourceDC string, volumeSize uint64) float64 {
score := 0.0
// Prefer disks with lower load
activeLoad := len(disk.pendingTasks) + len(disk.assignedTasks)
score += (2.0 - float64(activeLoad)) * 40.0 // Max 80 points for load
// Prefer disks with more free space
if disk.DiskInfo.DiskInfo.MaxVolumeCount > 0 {
freeRatio := float64(disk.DiskInfo.DiskInfo.MaxVolumeCount-disk.DiskInfo.DiskInfo.VolumeCount) / float64(disk.DiskInfo.DiskInfo.MaxVolumeCount)
score += freeRatio * 20.0 // Max 20 points for free space
}
// Rack diversity bonus (prefer different rack)
if disk.Rack != sourceRack {
score += 10.0
}
// DC diversity bonus (prefer different DC)
if disk.DataCenter != sourceDC {
score += 5.0
}
return score
}
// calculateECScore calculates placement score for EC operations
func (at *ActiveTopology) calculateECScore(disk *activeDisk, sourceRack string, sourceDC string) float64 {
score := 0.0
// Prefer disks with lower load
activeLoad := len(disk.pendingTasks) + len(disk.assignedTasks)
score += (2.0 - float64(activeLoad)) * 30.0 // Max 60 points for load
// Prefer disks with more free space
if disk.DiskInfo.DiskInfo.MaxVolumeCount > 0 {
freeRatio := float64(disk.DiskInfo.DiskInfo.MaxVolumeCount-disk.DiskInfo.DiskInfo.VolumeCount) / float64(disk.DiskInfo.DiskInfo.MaxVolumeCount)
score += freeRatio * 20.0 // Max 20 points for free space
}
// Strong rack diversity preference for EC
if disk.Rack != sourceRack {
score += 20.0
}
// Strong DC diversity preference for EC
if disk.DataCenter != sourceDC {
score += 15.0
}
return score
}
// calculatePlacementScore calculates overall placement quality score
func (at *ActiveTopology) calculatePlacementScore(disk *activeDisk, sourceRack string, sourceDC string) float64 {
score := 0.0
// Load factor
activeLoad := len(disk.pendingTasks) + len(disk.assignedTasks)
loadScore := (2.0 - float64(activeLoad)) / 2.0 // Normalize to 0-1
score += loadScore * 0.4
// Capacity factor
if disk.DiskInfo.DiskInfo.MaxVolumeCount > 0 {
freeRatio := float64(disk.DiskInfo.DiskInfo.MaxVolumeCount-disk.DiskInfo.DiskInfo.VolumeCount) / float64(disk.DiskInfo.DiskInfo.MaxVolumeCount)
score += freeRatio * 0.3
}
// Diversity factor
diversityScore := 0.0
if disk.Rack != sourceRack {
diversityScore += 0.5
}
if disk.DataCenter != sourceDC {
diversityScore += 0.5
}
score += diversityScore * 0.3
return score // Score between 0.0 and 1.0
}
// checkPlacementConflicts checks for placement rule violations
func (at *ActiveTopology) checkPlacementConflicts(disk *activeDisk, taskType TaskType) []string {
var conflicts []string
// Check load limits
activeLoad := len(disk.pendingTasks) + len(disk.assignedTasks)
if activeLoad >= 2 {
conflicts = append(conflicts, fmt.Sprintf("disk_load_high_%d", activeLoad))
}
// Check capacity limits
if disk.DiskInfo.DiskInfo.MaxVolumeCount > 0 {
usageRatio := float64(disk.DiskInfo.DiskInfo.VolumeCount) / float64(disk.DiskInfo.DiskInfo.MaxVolumeCount)
if usageRatio > 0.9 {
conflicts = append(conflicts, "disk_capacity_high")
}
}
// Check for conflicting task types
for _, task := range disk.assignedTasks {
if at.areTaskTypesConflicting(task.TaskType, taskType) {
conflicts = append(conflicts, fmt.Sprintf("task_conflict_%s", task.TaskType))
}
}
return conflicts
}
// Private methods
// reassignTaskStates assigns tasks to the appropriate disks
func (at *ActiveTopology) reassignTaskStates() {
// Clear existing task assignments
for _, disk := range at.disks {
disk.pendingTasks = nil
disk.assignedTasks = nil
disk.recentTasks = nil
}
// Reassign pending tasks
for _, task := range at.pendingTasks {
at.assignTaskToDisk(task)
}
// Reassign assigned tasks
for _, task := range at.assignedTasks {
at.assignTaskToDisk(task)
}
// Reassign recent tasks
for _, task := range at.recentTasks {
at.assignTaskToDisk(task)
}
}
// assignTaskToDisk assigns a task to the appropriate disk(s)
func (at *ActiveTopology) assignTaskToDisk(task *taskState) {
// Assign to source disk
sourceKey := fmt.Sprintf("%s:%d", task.SourceServer, task.SourceDisk)
if sourceDisk, exists := at.disks[sourceKey]; exists {
switch task.Status {
case TaskStatusPending:
sourceDisk.pendingTasks = append(sourceDisk.pendingTasks, task)
case TaskStatusInProgress:
sourceDisk.assignedTasks = append(sourceDisk.assignedTasks, task)
case TaskStatusCompleted:
sourceDisk.recentTasks = append(sourceDisk.recentTasks, task)
}
}
// Assign to target disk if it exists and is different from source
if task.TargetServer != "" && (task.TargetServer != task.SourceServer || task.TargetDisk != task.SourceDisk) {
targetKey := fmt.Sprintf("%s:%d", task.TargetServer, task.TargetDisk)
if targetDisk, exists := at.disks[targetKey]; exists {
switch task.Status {
case TaskStatusPending:
targetDisk.pendingTasks = append(targetDisk.pendingTasks, task)
case TaskStatusInProgress:
targetDisk.assignedTasks = append(targetDisk.assignedTasks, task)
case TaskStatusCompleted:
targetDisk.recentTasks = append(targetDisk.recentTasks, task)
}
}
}
}
// isDiskAvailable checks if a disk can accept new tasks
func (at *ActiveTopology) isDiskAvailable(disk *activeDisk, taskType TaskType) bool {
// Check if disk has too many active tasks
activeLoad := len(disk.pendingTasks) + len(disk.assignedTasks)
if activeLoad >= 2 { // Max 2 concurrent tasks per disk
return false
}
// Check for conflicting task types
for _, task := range disk.assignedTasks {
if at.areTaskTypesConflicting(task.TaskType, taskType) {
return false
}
}
return true
}
// areTaskTypesConflicting checks if two task types conflict
func (at *ActiveTopology) areTaskTypesConflicting(existing, new TaskType) bool {
// Examples of conflicting task types
conflictMap := map[TaskType][]TaskType{
TaskTypeVacuum: {TaskTypeBalance, TaskTypeErasureCoding},
TaskTypeBalance: {TaskTypeVacuum, TaskTypeErasureCoding},
TaskTypeErasureCoding: {TaskTypeVacuum, TaskTypeBalance},
}
if conflicts, exists := conflictMap[existing]; exists {
for _, conflictType := range conflicts {
if conflictType == new {
return true
}
}
}
return false
}
// cleanupRecentTasks removes old recent tasks
func (at *ActiveTopology) cleanupRecentTasks() {
cutoff := time.Now().Add(-time.Duration(at.recentTaskWindowSeconds) * time.Second)
for taskID, task := range at.recentTasks {
if task.CompletedAt.Before(cutoff) {
delete(at.recentTasks, taskID)
}
}
}

View File

@@ -0,0 +1,654 @@
package topology
import (
"testing"
"time"
"github.com/seaweedfs/seaweedfs/weed/glog"
"github.com/seaweedfs/seaweedfs/weed/pb/master_pb"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
// TestActiveTopologyBasicOperations tests basic topology management
func TestActiveTopologyBasicOperations(t *testing.T) {
topology := NewActiveTopology(10)
assert.NotNil(t, topology)
assert.Equal(t, 10, topology.recentTaskWindowSeconds)
// Test empty topology
assert.Equal(t, 0, len(topology.nodes))
assert.Equal(t, 0, len(topology.disks))
assert.Equal(t, 0, len(topology.pendingTasks))
}
// TestActiveTopologyUpdate tests topology updates from master
func TestActiveTopologyUpdate(t *testing.T) {
topology := NewActiveTopology(10)
// Create sample topology info
topologyInfo := createSampleTopology()
err := topology.UpdateTopology(topologyInfo)
require.NoError(t, err)
// Verify topology structure
assert.Equal(t, 2, len(topology.nodes)) // 2 nodes
assert.Equal(t, 4, len(topology.disks)) // 4 disks total (2 per node)
// Verify node structure
node1, exists := topology.nodes["10.0.0.1:8080"]
require.True(t, exists)
assert.Equal(t, "dc1", node1.dataCenter)
assert.Equal(t, "rack1", node1.rack)
assert.Equal(t, 2, len(node1.disks))
// Verify disk structure
disk1, exists := topology.disks["10.0.0.1:8080:0"]
require.True(t, exists)
assert.Equal(t, uint32(0), disk1.DiskID)
assert.Equal(t, "hdd", disk1.DiskType)
assert.Equal(t, "dc1", disk1.DataCenter)
}
// TestTaskLifecycle tests the complete task lifecycle
func TestTaskLifecycle(t *testing.T) {
topology := NewActiveTopology(10)
topology.UpdateTopology(createSampleTopology())
taskID := "balance-001"
// 1. Add pending task
topology.AddPendingTask(taskID, TaskTypeBalance, 1001,
"10.0.0.1:8080", 0, "10.0.0.2:8080", 1)
// Verify pending state
assert.Equal(t, 1, len(topology.pendingTasks))
assert.Equal(t, 0, len(topology.assignedTasks))
assert.Equal(t, 0, len(topology.recentTasks))
task := topology.pendingTasks[taskID]
assert.Equal(t, TaskStatusPending, task.Status)
assert.Equal(t, uint32(1001), task.VolumeID)
// Verify task assigned to disks
sourceDisk := topology.disks["10.0.0.1:8080:0"]
targetDisk := topology.disks["10.0.0.2:8080:1"]
assert.Equal(t, 1, len(sourceDisk.pendingTasks))
assert.Equal(t, 1, len(targetDisk.pendingTasks))
// 2. Assign task
err := topology.AssignTask(taskID)
require.NoError(t, err)
// Verify assigned state
assert.Equal(t, 0, len(topology.pendingTasks))
assert.Equal(t, 1, len(topology.assignedTasks))
assert.Equal(t, 0, len(topology.recentTasks))
task = topology.assignedTasks[taskID]
assert.Equal(t, TaskStatusInProgress, task.Status)
// Verify task moved to assigned on disks
assert.Equal(t, 0, len(sourceDisk.pendingTasks))
assert.Equal(t, 1, len(sourceDisk.assignedTasks))
assert.Equal(t, 0, len(targetDisk.pendingTasks))
assert.Equal(t, 1, len(targetDisk.assignedTasks))
// 3. Complete task
err = topology.CompleteTask(taskID)
require.NoError(t, err)
// Verify completed state
assert.Equal(t, 0, len(topology.pendingTasks))
assert.Equal(t, 0, len(topology.assignedTasks))
assert.Equal(t, 1, len(topology.recentTasks))
task = topology.recentTasks[taskID]
assert.Equal(t, TaskStatusCompleted, task.Status)
assert.False(t, task.CompletedAt.IsZero())
}
// TestTaskDetectionScenarios tests various task detection scenarios
func TestTaskDetectionScenarios(t *testing.T) {
tests := []struct {
name string
scenario func() *ActiveTopology
expectedTasks map[string]bool // taskType -> shouldDetect
}{
{
name: "Empty cluster - no tasks needed",
scenario: func() *ActiveTopology {
topology := NewActiveTopology(10)
topology.UpdateTopology(createEmptyTopology())
return topology
},
expectedTasks: map[string]bool{
"balance": false,
"vacuum": false,
"ec": false,
},
},
{
name: "Unbalanced cluster - balance task needed",
scenario: func() *ActiveTopology {
topology := NewActiveTopology(10)
topology.UpdateTopology(createUnbalancedTopology())
return topology
},
expectedTasks: map[string]bool{
"balance": true,
"vacuum": false,
"ec": false,
},
},
{
name: "High garbage ratio - vacuum task needed",
scenario: func() *ActiveTopology {
topology := NewActiveTopology(10)
topology.UpdateTopology(createHighGarbageTopology())
return topology
},
expectedTasks: map[string]bool{
"balance": false,
"vacuum": true,
"ec": false,
},
},
{
name: "Large volumes - EC task needed",
scenario: func() *ActiveTopology {
topology := NewActiveTopology(10)
topology.UpdateTopology(createLargeVolumeTopology())
return topology
},
expectedTasks: map[string]bool{
"balance": false,
"vacuum": false,
"ec": true,
},
},
{
name: "Recent tasks - no immediate re-detection",
scenario: func() *ActiveTopology {
topology := NewActiveTopology(10)
topology.UpdateTopology(createUnbalancedTopology())
// Add recent balance task
topology.recentTasks["recent-balance"] = &taskState{
VolumeID: 1001,
TaskType: TaskTypeBalance,
Status: TaskStatusCompleted,
CompletedAt: time.Now().Add(-5 * time.Second), // 5 seconds ago
}
return topology
},
expectedTasks: map[string]bool{
"balance": false, // Should not detect due to recent task
"vacuum": false,
"ec": false,
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
topology := tt.scenario()
// Test balance task detection
shouldDetectBalance := tt.expectedTasks["balance"]
actualDetectBalance := !topology.HasRecentTaskForVolume(1001, TaskTypeBalance)
if shouldDetectBalance {
assert.True(t, actualDetectBalance, "Should detect balance task")
} else {
// Note: In real implementation, task detection would be more sophisticated
// This is a simplified test of the recent task prevention mechanism
}
// Test that recent tasks prevent re-detection
if len(topology.recentTasks) > 0 {
for _, task := range topology.recentTasks {
hasRecent := topology.HasRecentTaskForVolume(task.VolumeID, task.TaskType)
assert.True(t, hasRecent, "Should find recent task for volume %d", task.VolumeID)
}
}
})
}
}
// TestTargetSelectionScenarios tests target selection for different task types
func TestTargetSelectionScenarios(t *testing.T) {
tests := []struct {
name string
topology *ActiveTopology
taskType TaskType
excludeNode string
expectedTargets int
expectedBestTarget string
}{
{
name: "Balance task - find least loaded disk",
topology: createTopologyWithLoad(),
taskType: TaskTypeBalance,
excludeNode: "10.0.0.1:8080", // Exclude source node
expectedTargets: 2, // 2 disks on other node
},
{
name: "EC task - find multiple available disks",
topology: createTopologyForEC(),
taskType: TaskTypeErasureCoding,
excludeNode: "", // Don't exclude any nodes
expectedTargets: 4, // All 4 disks available
},
{
name: "Vacuum task - avoid conflicting disks",
topology: createTopologyWithConflicts(),
taskType: TaskTypeVacuum,
excludeNode: "",
expectedTargets: 1, // Only 1 disk without conflicts (conflicts exclude more disks)
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
availableDisks := tt.topology.GetAvailableDisks(tt.taskType, tt.excludeNode)
assert.Equal(t, tt.expectedTargets, len(availableDisks),
"Expected %d available disks, got %d", tt.expectedTargets, len(availableDisks))
// Verify disks are actually available
for _, disk := range availableDisks {
assert.NotEqual(t, tt.excludeNode, disk.NodeID,
"Available disk should not be on excluded node")
load := tt.topology.GetDiskLoad(disk.NodeID, disk.DiskID)
assert.Less(t, load, 2, "Disk load should be less than 2")
}
})
}
}
// TestDiskLoadCalculation tests disk load calculation
func TestDiskLoadCalculation(t *testing.T) {
topology := NewActiveTopology(10)
topology.UpdateTopology(createSampleTopology())
// Initially no load
load := topology.GetDiskLoad("10.0.0.1:8080", 0)
assert.Equal(t, 0, load)
// Add pending task
topology.AddPendingTask("task1", TaskTypeBalance, 1001,
"10.0.0.1:8080", 0, "10.0.0.2:8080", 1)
// Check load increased
load = topology.GetDiskLoad("10.0.0.1:8080", 0)
assert.Equal(t, 1, load)
// Add another task to same disk
topology.AddPendingTask("task2", TaskTypeVacuum, 1002,
"10.0.0.1:8080", 0, "", 0)
load = topology.GetDiskLoad("10.0.0.1:8080", 0)
assert.Equal(t, 2, load)
// Move one task to assigned
topology.AssignTask("task1")
// Load should still be 2 (1 pending + 1 assigned)
load = topology.GetDiskLoad("10.0.0.1:8080", 0)
assert.Equal(t, 2, load)
// Complete one task
topology.CompleteTask("task1")
// Load should decrease to 1
load = topology.GetDiskLoad("10.0.0.1:8080", 0)
assert.Equal(t, 1, load)
}
// TestTaskConflictDetection tests task conflict detection
func TestTaskConflictDetection(t *testing.T) {
topology := NewActiveTopology(10)
topology.UpdateTopology(createSampleTopology())
// Add a balance task
topology.AddPendingTask("balance1", TaskTypeBalance, 1001,
"10.0.0.1:8080", 0, "10.0.0.2:8080", 1)
topology.AssignTask("balance1")
// Try to get available disks for vacuum (conflicts with balance)
availableDisks := topology.GetAvailableDisks(TaskTypeVacuum, "")
// Source disk should not be available due to conflict
sourceDiskAvailable := false
for _, disk := range availableDisks {
if disk.NodeID == "10.0.0.1:8080" && disk.DiskID == 0 {
sourceDiskAvailable = true
break
}
}
assert.False(t, sourceDiskAvailable, "Source disk should not be available due to task conflict")
}
// TestPublicInterfaces tests the public interface methods
func TestPublicInterfaces(t *testing.T) {
topology := NewActiveTopology(10)
topology.UpdateTopology(createSampleTopology())
// Test GetAllNodes
nodes := topology.GetAllNodes()
assert.Equal(t, 2, len(nodes))
assert.Contains(t, nodes, "10.0.0.1:8080")
assert.Contains(t, nodes, "10.0.0.2:8080")
// Test GetNodeDisks
disks := topology.GetNodeDisks("10.0.0.1:8080")
assert.Equal(t, 2, len(disks))
// Test with non-existent node
disks = topology.GetNodeDisks("non-existent")
assert.Nil(t, disks)
}
// Helper functions to create test topologies
func createSampleTopology() *master_pb.TopologyInfo {
return &master_pb.TopologyInfo{
DataCenterInfos: []*master_pb.DataCenterInfo{
{
Id: "dc1",
RackInfos: []*master_pb.RackInfo{
{
Id: "rack1",
DataNodeInfos: []*master_pb.DataNodeInfo{
{
Id: "10.0.0.1:8080",
DiskInfos: map[string]*master_pb.DiskInfo{
"hdd": {DiskId: 0, VolumeCount: 10, MaxVolumeCount: 100},
"ssd": {DiskId: 1, VolumeCount: 5, MaxVolumeCount: 50},
},
},
{
Id: "10.0.0.2:8080",
DiskInfos: map[string]*master_pb.DiskInfo{
"hdd": {DiskId: 0, VolumeCount: 8, MaxVolumeCount: 100},
"ssd": {DiskId: 1, VolumeCount: 3, MaxVolumeCount: 50},
},
},
},
},
},
},
},
}
}
func createEmptyTopology() *master_pb.TopologyInfo {
return &master_pb.TopologyInfo{
DataCenterInfos: []*master_pb.DataCenterInfo{
{
Id: "dc1",
RackInfos: []*master_pb.RackInfo{
{
Id: "rack1",
DataNodeInfos: []*master_pb.DataNodeInfo{
{
Id: "10.0.0.1:8080",
DiskInfos: map[string]*master_pb.DiskInfo{
"hdd": {DiskId: 0, VolumeCount: 0, MaxVolumeCount: 100},
},
},
},
},
},
},
},
}
}
func createUnbalancedTopology() *master_pb.TopologyInfo {
return &master_pb.TopologyInfo{
DataCenterInfos: []*master_pb.DataCenterInfo{
{
Id: "dc1",
RackInfos: []*master_pb.RackInfo{
{
Id: "rack1",
DataNodeInfos: []*master_pb.DataNodeInfo{
{
Id: "10.0.0.1:8080",
DiskInfos: map[string]*master_pb.DiskInfo{
"hdd": {DiskId: 0, VolumeCount: 90, MaxVolumeCount: 100}, // Very loaded
},
},
{
Id: "10.0.0.2:8080",
DiskInfos: map[string]*master_pb.DiskInfo{
"hdd": {DiskId: 0, VolumeCount: 10, MaxVolumeCount: 100}, // Lightly loaded
},
},
},
},
},
},
},
}
}
func createHighGarbageTopology() *master_pb.TopologyInfo {
// In a real implementation, this would include volume-level garbage metrics
return createSampleTopology()
}
func createLargeVolumeTopology() *master_pb.TopologyInfo {
// In a real implementation, this would include volume-level size metrics
return createSampleTopology()
}
func createTopologyWithLoad() *ActiveTopology {
topology := NewActiveTopology(10)
topology.UpdateTopology(createSampleTopology())
// Add some existing tasks to create load
topology.AddPendingTask("existing1", TaskTypeVacuum, 2001,
"10.0.0.1:8080", 0, "", 0)
topology.AssignTask("existing1")
return topology
}
func createTopologyForEC() *ActiveTopology {
topology := NewActiveTopology(10)
topology.UpdateTopology(createSampleTopology())
return topology
}
func createTopologyWithConflicts() *ActiveTopology {
topology := NewActiveTopology(10)
topology.UpdateTopology(createSampleTopology())
// Add conflicting tasks
topology.AddPendingTask("balance1", TaskTypeBalance, 3001,
"10.0.0.1:8080", 0, "10.0.0.2:8080", 0)
topology.AssignTask("balance1")
topology.AddPendingTask("ec1", TaskTypeErasureCoding, 3002,
"10.0.0.1:8080", 1, "", 0)
topology.AssignTask("ec1")
return topology
}
// TestDestinationPlanning tests destination planning functionality
func TestDestinationPlanning(t *testing.T) {
topology := NewActiveTopology(10)
topology.UpdateTopology(createSampleTopology())
// Test balance destination planning
t.Run("Balance destination planning", func(t *testing.T) {
plan, err := topology.PlanBalanceDestination(1001, "10.0.0.1:8080", "rack1", "dc1", 1024*1024) // 1MB
require.NoError(t, err)
require.NotNil(t, plan)
// Should not target the source node
assert.NotEqual(t, "10.0.0.1:8080", plan.TargetNode)
assert.Equal(t, "10.0.0.2:8080", plan.TargetNode)
assert.NotEmpty(t, plan.TargetRack)
assert.NotEmpty(t, plan.TargetDC)
assert.Greater(t, plan.PlacementScore, 0.0)
})
// Test EC destination planning
t.Run("EC destination planning", func(t *testing.T) {
multiPlan, err := topology.PlanECDestinations(1002, "10.0.0.1:8080", "rack1", "dc1", 3) // Ask for 3 shards - source node can be included
require.NoError(t, err)
require.NotNil(t, multiPlan)
assert.Greater(t, len(multiPlan.Plans), 0)
assert.LessOrEqual(t, len(multiPlan.Plans), 3) // Should get at most 3 shards
assert.Equal(t, len(multiPlan.Plans), multiPlan.TotalShards)
// Check that all plans have valid target nodes
for _, plan := range multiPlan.Plans {
assert.NotEmpty(t, plan.TargetNode)
assert.NotEmpty(t, plan.TargetRack)
assert.NotEmpty(t, plan.TargetDC)
assert.GreaterOrEqual(t, plan.PlacementScore, 0.0)
}
// Check diversity metrics
assert.GreaterOrEqual(t, multiPlan.SuccessfulRack, 1)
assert.GreaterOrEqual(t, multiPlan.SuccessfulDCs, 1)
})
// Test destination planning with load
t.Run("Destination planning considers load", func(t *testing.T) {
// Add load to one disk
topology.AddPendingTask("task1", TaskTypeBalance, 2001,
"10.0.0.2:8080", 0, "", 0)
plan, err := topology.PlanBalanceDestination(1003, "10.0.0.1:8080", "rack1", "dc1", 1024*1024)
require.NoError(t, err)
require.NotNil(t, plan)
// Should prefer less loaded disk (disk 1 over disk 0 on node2)
assert.Equal(t, "10.0.0.2:8080", plan.TargetNode)
assert.Equal(t, uint32(1), plan.TargetDisk) // Should prefer SSD (disk 1) which has no load
})
// Test insufficient destinations
t.Run("Handle insufficient destinations", func(t *testing.T) {
// Try to plan for more EC shards than available disks
multiPlan, err := topology.PlanECDestinations(1004, "10.0.0.1:8080", "rack1", "dc1", 100)
// Should get an error for insufficient disks
assert.Error(t, err)
assert.Nil(t, multiPlan)
})
}
// TestDestinationPlanningWithActiveTopology tests the integration between task detection and destination planning
func TestDestinationPlanningWithActiveTopology(t *testing.T) {
topology := NewActiveTopology(10)
topology.UpdateTopology(createUnbalancedTopology())
// Test that tasks are created with destinations
t.Run("Balance task with destination", func(t *testing.T) {
// Simulate what the balance detector would create
sourceNode := "10.0.0.1:8080" // Overloaded node
volumeID := uint32(1001)
plan, err := topology.PlanBalanceDestination(volumeID, sourceNode, "rack1", "dc1", 1024*1024)
require.NoError(t, err)
require.NotNil(t, plan)
// Verify the destination is different from source
assert.NotEqual(t, sourceNode, plan.TargetNode)
assert.Equal(t, "10.0.0.2:8080", plan.TargetNode) // Should be the lightly loaded node
// Verify placement quality
assert.Greater(t, plan.PlacementScore, 0.0)
assert.LessOrEqual(t, plan.PlacementScore, 1.0)
})
// Test task state integration
t.Run("Task state affects future planning", func(t *testing.T) {
volumeID := uint32(1002)
sourceNode := "10.0.0.1:8080"
targetNode := "10.0.0.2:8080"
// Plan first destination
plan1, err := topology.PlanBalanceDestination(volumeID, sourceNode, "rack1", "dc1", 1024*1024)
require.NoError(t, err)
require.NotNil(t, plan1)
// Add a pending task to the target
topology.AddPendingTask("task1", TaskTypeBalance, volumeID, sourceNode, 0, targetNode, 0)
// Plan another destination - should consider the pending task load
plan2, err := topology.PlanBalanceDestination(1003, sourceNode, "rack1", "dc1", 1024*1024)
require.NoError(t, err)
require.NotNil(t, plan2)
// The placement score should reflect the increased load
// (This test might need adjustment based on the actual scoring algorithm)
glog.V(1).Infof("Plan1 score: %.3f, Plan2 score: %.3f", plan1.PlacementScore, plan2.PlacementScore)
})
}
// TestECDestinationPlanningDetailed tests the EC destination planning with multiple shards
func TestECDestinationPlanningDetailed(t *testing.T) {
topology := NewActiveTopology(10)
topology.UpdateTopology(createSampleTopology())
t.Run("EC multiple destinations", func(t *testing.T) {
// Plan for 3 EC shards (now including source node, we have 4 disks total)
multiPlan, err := topology.PlanECDestinations(1005, "10.0.0.1:8080", "rack1", "dc1", 3)
require.NoError(t, err)
require.NotNil(t, multiPlan)
// Should get 3 destinations (can include source node's disks)
assert.Equal(t, 3, len(multiPlan.Plans))
assert.Equal(t, 3, multiPlan.TotalShards)
// Count node distribution - source node can now be included
nodeCount := make(map[string]int)
for _, plan := range multiPlan.Plans {
nodeCount[plan.TargetNode]++
}
// Should distribute across available nodes (both nodes can be used)
assert.GreaterOrEqual(t, len(nodeCount), 1, "Should use at least 1 node")
assert.LessOrEqual(t, len(nodeCount), 2, "Should use at most 2 nodes")
glog.V(1).Infof("EC destinations node distribution: %v", nodeCount)
glog.V(1).Infof("EC destinations: %d plans across %d racks, %d DCs",
multiPlan.TotalShards, multiPlan.SuccessfulRack, multiPlan.SuccessfulDCs)
})
t.Run("EC destination planning with task conflicts", func(t *testing.T) {
// Create a fresh topology for this test to avoid conflicts from previous test
freshTopology := NewActiveTopology(10)
freshTopology.UpdateTopology(createSampleTopology())
// Add tasks to create conflicts on some disks
freshTopology.AddPendingTask("conflict1", TaskTypeVacuum, 2001, "10.0.0.2:8080", 0, "", 0)
freshTopology.AddPendingTask("conflict2", TaskTypeBalance, 2002, "10.0.0.1:8080", 0, "", 0)
freshTopology.AssignTask("conflict1")
freshTopology.AssignTask("conflict2")
// Plan EC destinations - should still succeed using available disks
multiPlan, err := freshTopology.PlanECDestinations(1006, "10.0.0.1:8080", "rack1", "dc1", 2)
require.NoError(t, err)
require.NotNil(t, multiPlan)
// Should get destinations (using disks that don't have conflicts)
assert.GreaterOrEqual(t, len(multiPlan.Plans), 1)
assert.LessOrEqual(t, len(multiPlan.Plans), 2)
// Available disks should be: node1/disk1 and node2/disk1 (since disk0 on both nodes have conflicts)
for _, plan := range multiPlan.Plans {
assert.Equal(t, uint32(1), plan.TargetDisk, "Should prefer disk 1 which has no conflicts")
}
glog.V(1).Infof("EC destination planning with conflicts: found %d destinations", len(multiPlan.Plans))
})
}