
- Remove github.com/pganalyze/pg_query_go/v6 dependency to avoid CGO requirement - Implement lightweight SQL parser for basic SELECT, SHOW, and DDL statements - Fix operator precedence in WHERE clause parsing (handle AND/OR before comparisons) - Support INTEGER, FLOAT, and STRING literals in WHERE conditions - All SQL engine tests passing with new parser - PostgreSQL integration tests can now build without CGO The lightweight parser handles the essential SQL features needed for the SeaweedFS query engine while maintaining compatibility and avoiding CGO dependencies that caused Docker build issues.
SeaweedFS PostgreSQL Protocol Test Suite
This directory contains a comprehensive Docker Compose test setup for the SeaweedFS PostgreSQL wire protocol implementation.
Overview
The test suite includes:
- SeaweedFS Cluster: Full SeaweedFS server with MQ broker and agent
- PostgreSQL Server: SeaweedFS PostgreSQL wire protocol server
- MQ Data Producer: Creates realistic test data across multiple topics and namespaces
- PostgreSQL Test Client: Comprehensive Go client testing all functionality
- Interactive Tools: psql CLI access for manual testing
Quick Start
1. Run Complete Test Suite (Automated)
./run-tests.sh all
This will automatically:
- Start SeaweedFS and PostgreSQL servers
- Create test data in multiple MQ topics
- Run comprehensive PostgreSQL client tests
- Show results
2. Manual Step-by-Step Testing
# Start the services
./run-tests.sh start
# Create test data
./run-tests.sh produce
# Run automated tests
./run-tests.sh test
# Connect with psql for interactive testing
./run-tests.sh psql
3. Interactive PostgreSQL Testing
# Connect with psql
./run-tests.sh psql
# Inside psql session:
postgres=> SHOW DATABASES;
postgres=> USE analytics;
postgres=> SHOW TABLES;
postgres=> SELECT COUNT(*) FROM user_events;
postgres=> SELECT user_type, COUNT(*) FROM user_events GROUP BY user_type;
postgres=> \q
Test Data Structure
The producer creates realistic test data across multiple namespaces:
Analytics Namespace
-
user_events
(1000 records): User interaction events- Fields: id, user_id, user_type, action, status, amount, timestamp, metadata
- User types: premium, standard, trial, enterprise
- Actions: login, logout, purchase, view, search, click, download
-
system_logs
(500 records): System operation logs- Fields: id, level, service, message, error_code, timestamp
- Levels: debug, info, warning, error, critical
- Services: auth-service, payment-service, user-service, etc.
-
metrics
(800 records): System metrics- Fields: id, name, value, tags, timestamp
- Metrics: cpu_usage, memory_usage, disk_usage, request_latency, etc.
E-commerce Namespace
-
product_views
(1200 records): Product interaction data- Fields: id, product_id, user_id, category, price, view_count, timestamp
- Categories: electronics, books, clothing, home, sports, automotive
-
user_events
(600 records): E-commerce specific user events
Logs Namespace
application_logs
(2000 records): Application logserror_logs
(300 records): Error-specific logs with 4xx/5xx error codes
Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ PostgreSQL │ │ PostgreSQL │ │ SeaweedFS │
│ Clients │◄──►│ Wire Protocol │◄──►│ SQL Engine │
│ (psql, Go) │ │ Server │ │ │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │
▼ ▼
┌──────────────────┐ ┌─────────────────┐
│ Session │ │ MQ Broker │
│ Management │ │ & Topics │
└──────────────────┘ └─────────────────┘
Services
SeaweedFS Server
- Ports: 9333 (master), 8888 (filer), 8333 (S3), 8085 (volume), 9533 (metrics), 26777→16777 (MQ agent), 27777→17777 (MQ broker)
- Features: Full MQ broker, S3 API, filer, volume server
- Data: Persistent storage in Docker volume
- Health Check: Cluster status endpoint
PostgreSQL Server
- Port: 5432 (standard PostgreSQL port)
- Protocol: Full PostgreSQL 3.0 wire protocol
- Authentication: Trust mode (no password for testing)
- Features: Real-time MQ topic discovery, database context switching
MQ Producer
- Purpose: Creates realistic test data
- Topics: 7 topics across 3 namespaces
- Data Types: JSON messages with varied schemas
- Volume: ~4,400 total records with realistic distributions
Test Client
- Language: Go with standard
lib/pq
PostgreSQL driver - Tests: 8 comprehensive test categories
- Coverage: System info, discovery, queries, aggregations, context switching
Available Commands
./run-tests.sh start # Start services
./run-tests.sh produce # Create test data
./run-tests.sh test # Run client tests
./run-tests.sh psql # Interactive psql
./run-tests.sh logs # Show service logs
./run-tests.sh status # Service status
./run-tests.sh stop # Stop services
./run-tests.sh clean # Complete cleanup
./run-tests.sh all # Full automated test
Test Categories
1. System Information
- PostgreSQL version compatibility
- Current user and database
- Server settings and encoding
2. Database Discovery
SHOW DATABASES
- List MQ namespaces- Dynamic namespace discovery from filer
3. Table Discovery
SHOW TABLES
- List topics in current namespace- Real-time topic discovery
4. Data Queries
- Basic
SELECT * FROM table
queries - Sample data retrieval and display
- Column information
5. Aggregation Queries
COUNT(*)
,SUM()
,AVG()
,MIN()
,MAX()
GROUP BY
operations- Statistical analysis
6. Database Context Switching
USE database
commands- Session isolation testing
- Cross-namespace queries
7. System Columns
_timestamp_ns
,_key
,_source
access- MQ metadata exposure
8. Complex Queries
WHERE
clauses with comparisonsORDER BY
andLIMIT
- Multi-condition filtering
Expected Results
After running the complete test suite, you should see:
=== Test Results ===
✅ Test PASSED: System Information
✅ Test PASSED: Database Discovery
✅ Test PASSED: Table Discovery
✅ Test PASSED: Data Queries
✅ Test PASSED: Aggregation Queries
✅ Test PASSED: Database Context Switching
✅ Test PASSED: System Columns
✅ Test PASSED: Complex Queries
Test Results: 8/8 tests passed
🎉 All tests passed!
Manual Testing Examples
Connect with psql
./run-tests.sh psql
Basic Exploration
-- Check system information
SELECT version();
SELECT current_user, current_database();
-- Discover data structure
SHOW DATABASES;
USE analytics;
SHOW TABLES;
DESCRIBE user_events;
Data Analysis
-- Basic queries
SELECT COUNT(*) FROM user_events;
SELECT * FROM user_events LIMIT 5;
-- Aggregations
SELECT
user_type,
COUNT(*) as events,
AVG(amount) as avg_amount
FROM user_events
WHERE amount IS NOT NULL
GROUP BY user_type
ORDER BY events DESC;
-- Time-based analysis
SELECT
action,
COUNT(*) as count
FROM user_events
WHERE status = 'active'
GROUP BY action
ORDER BY count DESC;
Cross-Namespace Analysis
-- Switch between namespaces
USE ecommerce;
SELECT category, COUNT(*) FROM product_views GROUP BY category;
USE logs;
SELECT level, COUNT(*) FROM application_logs GROUP BY level;
Troubleshooting
Services Not Starting
# Check service status
./run-tests.sh status
# View logs
./run-tests.sh logs seaweedfs
./run-tests.sh logs postgres-server
No Test Data
# Recreate test data
./run-tests.sh produce
# Check producer logs
./run-tests.sh logs mq-producer
Connection Issues
# Test PostgreSQL server health
docker-compose exec postgres-server nc -z localhost 5432
# Test SeaweedFS health
curl http://localhost:9333/cluster/status
Clean Restart
# Complete cleanup and restart
./run-tests.sh clean
./run-tests.sh all
Development
Modifying Test Data
Edit producer.go
to change:
- Data schemas and volume
- Topic names and namespaces
- Record generation logic
Adding Tests
Edit client.go
to add new test functions:
func testNewFeature(db *sql.DB) error {
// Your test implementation
return nil
}
// Add to tests slice in main()
{"New Feature", testNewFeature},
Custom Queries
Use the interactive psql session:
./run-tests.sh psql
Production Considerations
This test setup demonstrates:
- Real MQ Integration: Actual topic discovery and data access
- Universal PostgreSQL Compatibility: Works with any PostgreSQL client
- Production-Ready Features: Authentication, session management, error handling
- Scalable Architecture: Direct SQL engine integration, no translation overhead
The test validates that SeaweedFS can serve as a drop-in PostgreSQL replacement for read-only analytics workloads on MQ data.