mirror of
https://github.com/seaweedfs/seaweedfs.git
synced 2025-10-07 15:34:23 +08:00
fmt
This commit is contained in:
@@ -12,155 +12,155 @@ import (
|
||||
type BatchAccessPattern int
|
||||
|
||||
const (
|
||||
BatchPatternUnknown BatchAccessPattern = iota
|
||||
BatchPatternLinear // Linear batch processing
|
||||
BatchPatternStrided // Strided access with fixed gaps
|
||||
BatchPatternShuffled // Randomized batch order
|
||||
BatchPatternHierarchical // Hierarchical/nested batch access
|
||||
BatchPatternMultiGPU // Multi-GPU distributed batches
|
||||
BatchPatternPipelined // Pipelined batch processing
|
||||
BatchPatternUnknown BatchAccessPattern = iota
|
||||
BatchPatternLinear // Linear batch processing
|
||||
BatchPatternStrided // Strided access with fixed gaps
|
||||
BatchPatternShuffled // Randomized batch order
|
||||
BatchPatternHierarchical // Hierarchical/nested batch access
|
||||
BatchPatternMultiGPU // Multi-GPU distributed batches
|
||||
BatchPatternPipelined // Pipelined batch processing
|
||||
)
|
||||
|
||||
// BatchAccess represents a single file access that's part of batch processing
|
||||
type BatchAccess struct {
|
||||
Offset int64 // File offset
|
||||
Size int // Access size
|
||||
AccessTime time.Time // When accessed
|
||||
IsRead bool // Whether this was a read operation
|
||||
BatchHint string // Optional batch identifier hint
|
||||
Offset int64 // File offset
|
||||
Size int // Access size
|
||||
AccessTime time.Time // When accessed
|
||||
IsRead bool // Whether this was a read operation
|
||||
BatchHint string // Optional batch identifier hint
|
||||
}
|
||||
|
||||
// BatchInfo holds information about a detected batch
|
||||
type BatchInfo struct {
|
||||
sync.RWMutex
|
||||
|
||||
|
||||
// Batch identification
|
||||
BatchID string // Unique batch identifier
|
||||
StartOffset int64 // Starting file offset
|
||||
EndOffset int64 // Ending file offset
|
||||
Size int64 // Total batch size in bytes
|
||||
ItemCount int // Number of items in batch
|
||||
ItemSize int64 // Average item size
|
||||
|
||||
BatchID string // Unique batch identifier
|
||||
StartOffset int64 // Starting file offset
|
||||
EndOffset int64 // Ending file offset
|
||||
Size int64 // Total batch size in bytes
|
||||
ItemCount int // Number of items in batch
|
||||
ItemSize int64 // Average item size
|
||||
|
||||
// Access pattern
|
||||
AccessPattern BatchAccessPattern // Detected access pattern
|
||||
AccessOrder []int64 // Order of access within batch
|
||||
AccessTimes []time.Time // When each item was accessed
|
||||
ProcessingTime time.Duration // Total time to process batch
|
||||
|
||||
AccessPattern BatchAccessPattern // Detected access pattern
|
||||
AccessOrder []int64 // Order of access within batch
|
||||
AccessTimes []time.Time // When each item was accessed
|
||||
ProcessingTime time.Duration // Total time to process batch
|
||||
|
||||
// Performance metrics
|
||||
LoadTime time.Duration // Time to load batch from storage
|
||||
ProcessTime time.Duration // Time to process batch (compute)
|
||||
TotalTime time.Duration // Total end-to-end time
|
||||
Throughput float64 // Items per second
|
||||
|
||||
LoadTime time.Duration // Time to load batch from storage
|
||||
ProcessTime time.Duration // Time to process batch (compute)
|
||||
TotalTime time.Duration // Total end-to-end time
|
||||
Throughput float64 // Items per second
|
||||
|
||||
// Optimization state
|
||||
IsPrefetched bool // Whether batch was prefetched
|
||||
CacheHitRate float64 // Percentage of cache hits
|
||||
OptimalPrefetch int64 // Recommended prefetch size
|
||||
|
||||
IsPrefetched bool // Whether batch was prefetched
|
||||
CacheHitRate float64 // Percentage of cache hits
|
||||
OptimalPrefetch int64 // Recommended prefetch size
|
||||
|
||||
// Relationship to other batches
|
||||
PreviousBatch *BatchInfo // Previous batch in sequence
|
||||
NextBatch *BatchInfo // Next batch in sequence
|
||||
ParentBatch *BatchInfo // Parent batch (for hierarchical)
|
||||
ChildBatches []*BatchInfo // Child batches (for hierarchical)
|
||||
PreviousBatch *BatchInfo // Previous batch in sequence
|
||||
NextBatch *BatchInfo // Next batch in sequence
|
||||
ParentBatch *BatchInfo // Parent batch (for hierarchical)
|
||||
ChildBatches []*BatchInfo // Child batches (for hierarchical)
|
||||
}
|
||||
|
||||
// BatchOptimizer optimizes batch access patterns for ML workloads
|
||||
type BatchOptimizer struct {
|
||||
sync.RWMutex
|
||||
|
||||
|
||||
// Configuration
|
||||
maxBatchesTracked int // Maximum number of batches to track
|
||||
batchDetectionWindow int // Window size for batch detection
|
||||
minBatchSize int64 // Minimum size to consider as batch
|
||||
maxBatchSize int64 // Maximum size to consider as batch
|
||||
|
||||
maxBatchesTracked int // Maximum number of batches to track
|
||||
batchDetectionWindow int // Window size for batch detection
|
||||
minBatchSize int64 // Minimum size to consider as batch
|
||||
maxBatchSize int64 // Maximum size to consider as batch
|
||||
|
||||
// Batch tracking
|
||||
activeBatches map[string]*BatchInfo // Currently active batches
|
||||
completedBatches map[string]*BatchInfo // Recently completed batches
|
||||
inodeToBatches map[uint64][]*BatchInfo // File to batches mapping
|
||||
|
||||
activeBatches map[string]*BatchInfo // Currently active batches
|
||||
completedBatches map[string]*BatchInfo // Recently completed batches
|
||||
inodeToBatches map[uint64][]*BatchInfo // File to batches mapping
|
||||
|
||||
// Pattern detection
|
||||
accessHistory map[uint64][]BatchAccess // Recent access history per file
|
||||
batchSequences map[uint64]*BatchSequence // Detected batch sequences
|
||||
|
||||
accessHistory map[uint64][]BatchAccess // Recent access history per file
|
||||
batchSequences map[uint64]*BatchSequence // Detected batch sequences
|
||||
|
||||
// Optimization strategies
|
||||
prefetchStrategies map[BatchAccessPattern]*PrefetchConfig // Prefetch configs per pattern
|
||||
cacheStrategies map[BatchAccessPattern]*CacheConfig // Cache configs per pattern
|
||||
|
||||
prefetchStrategies map[BatchAccessPattern]*PrefetchConfig // Prefetch configs per pattern
|
||||
cacheStrategies map[BatchAccessPattern]*CacheConfig // Cache configs per pattern
|
||||
|
||||
// Statistics
|
||||
totalBatchesDetected int64 // Total batches detected
|
||||
optimizationHits int64 // Successful optimization applications
|
||||
optimizationMisses int64 // Failed optimization attempts
|
||||
|
||||
totalBatchesDetected int64 // Total batches detected
|
||||
optimizationHits int64 // Successful optimization applications
|
||||
optimizationMisses int64 // Failed optimization attempts
|
||||
|
||||
// Background processing
|
||||
cleanupTicker *time.Ticker // Cleanup timer
|
||||
stopCleanup chan struct{} // Cleanup stop signal
|
||||
cleanupTicker *time.Ticker // Cleanup timer
|
||||
stopCleanup chan struct{} // Cleanup stop signal
|
||||
}
|
||||
|
||||
// BatchSequence represents a sequence of related batches
|
||||
type BatchSequence struct {
|
||||
sync.RWMutex
|
||||
|
||||
SequenceID string // Unique sequence identifier
|
||||
Batches []*BatchInfo // Batches in sequence
|
||||
Pattern BatchAccessPattern // Overall sequence pattern
|
||||
StartTime time.Time // When sequence started
|
||||
LastAccess time.Time // Last access in sequence
|
||||
IsComplete bool // Whether sequence is complete
|
||||
RepeatCount int // How many times sequence has repeated
|
||||
|
||||
|
||||
SequenceID string // Unique sequence identifier
|
||||
Batches []*BatchInfo // Batches in sequence
|
||||
Pattern BatchAccessPattern // Overall sequence pattern
|
||||
StartTime time.Time // When sequence started
|
||||
LastAccess time.Time // Last access in sequence
|
||||
IsComplete bool // Whether sequence is complete
|
||||
RepeatCount int // How many times sequence has repeated
|
||||
|
||||
// Predictions
|
||||
NextBatchOffset int64 // Predicted next batch offset
|
||||
NextBatchSize int64 // Predicted next batch size
|
||||
Confidence float64 // Confidence in predictions (0-1)
|
||||
NextBatchOffset int64 // Predicted next batch offset
|
||||
NextBatchSize int64 // Predicted next batch size
|
||||
Confidence float64 // Confidence in predictions (0-1)
|
||||
}
|
||||
|
||||
// PrefetchConfig holds configuration for prefetching strategies
|
||||
type PrefetchConfig struct {
|
||||
Strategy PrefetchStrategy // Which prefetch strategy to use
|
||||
LookaheadCount int // How many items to prefetch ahead
|
||||
PrefetchSize int64 // Size to prefetch per operation
|
||||
ConcurrencyLevel int // How many concurrent prefetch operations
|
||||
AdaptiveScaling bool // Whether to scale based on performance
|
||||
Strategy PrefetchStrategy // Which prefetch strategy to use
|
||||
LookaheadCount int // How many items to prefetch ahead
|
||||
PrefetchSize int64 // Size to prefetch per operation
|
||||
ConcurrencyLevel int // How many concurrent prefetch operations
|
||||
AdaptiveScaling bool // Whether to scale based on performance
|
||||
}
|
||||
|
||||
// CacheConfig holds configuration for caching strategies
|
||||
// CacheConfig holds configuration for caching strategies
|
||||
type CacheConfig struct {
|
||||
Policy CachePolicy // Which cache policy to use
|
||||
RetentionTime time.Duration // How long to keep items cached
|
||||
Priority CachePriority // Cache priority level
|
||||
PreloadBatches int // How many batches to preload
|
||||
Policy CachePolicy // Which cache policy to use
|
||||
RetentionTime time.Duration // How long to keep items cached
|
||||
Priority CachePriority // Cache priority level
|
||||
PreloadBatches int // How many batches to preload
|
||||
}
|
||||
|
||||
// NewBatchOptimizer creates a new batch optimizer
|
||||
func NewBatchOptimizer() *BatchOptimizer {
|
||||
bo := &BatchOptimizer{
|
||||
maxBatchesTracked: 1000, // Track up to 1000 batches
|
||||
batchDetectionWindow: 100, // Look at last 100 accesses
|
||||
minBatchSize: 64 * 1024, // Minimum 64KB batch
|
||||
maxBatchSize: 100 * 1024 * 1024, // Maximum 100MB batch
|
||||
|
||||
activeBatches: make(map[string]*BatchInfo),
|
||||
completedBatches: make(map[string]*BatchInfo),
|
||||
inodeToBatches: make(map[uint64][]*BatchInfo),
|
||||
accessHistory: make(map[uint64][]BatchAccess),
|
||||
batchSequences: make(map[uint64]*BatchSequence),
|
||||
|
||||
prefetchStrategies: make(map[BatchAccessPattern]*PrefetchConfig),
|
||||
cacheStrategies: make(map[BatchAccessPattern]*CacheConfig),
|
||||
|
||||
stopCleanup: make(chan struct{}),
|
||||
maxBatchesTracked: 1000, // Track up to 1000 batches
|
||||
batchDetectionWindow: 100, // Look at last 100 accesses
|
||||
minBatchSize: 64 * 1024, // Minimum 64KB batch
|
||||
maxBatchSize: 100 * 1024 * 1024, // Maximum 100MB batch
|
||||
|
||||
activeBatches: make(map[string]*BatchInfo),
|
||||
completedBatches: make(map[string]*BatchInfo),
|
||||
inodeToBatches: make(map[uint64][]*BatchInfo),
|
||||
accessHistory: make(map[uint64][]BatchAccess),
|
||||
batchSequences: make(map[uint64]*BatchSequence),
|
||||
|
||||
prefetchStrategies: make(map[BatchAccessPattern]*PrefetchConfig),
|
||||
cacheStrategies: make(map[BatchAccessPattern]*CacheConfig),
|
||||
|
||||
stopCleanup: make(chan struct{}),
|
||||
}
|
||||
|
||||
|
||||
// Initialize default strategies
|
||||
bo.initializeDefaultStrategies()
|
||||
|
||||
|
||||
// Start cleanup routine
|
||||
bo.cleanupTicker = time.NewTicker(5 * time.Minute)
|
||||
go bo.cleanupRoutine()
|
||||
|
||||
|
||||
glog.V(1).Infof("Batch optimizer initialized")
|
||||
return bo
|
||||
}
|
||||
@@ -169,11 +169,11 @@ func NewBatchOptimizer() *BatchOptimizer {
|
||||
func (bo *BatchOptimizer) initializeDefaultStrategies() {
|
||||
// Linear batch pattern - aggressive prefetching
|
||||
bo.prefetchStrategies[BatchPatternLinear] = &PrefetchConfig{
|
||||
Strategy: PrefetchAggressive,
|
||||
LookaheadCount: 5,
|
||||
PrefetchSize: 2 * 1024 * 1024, // 2MB
|
||||
Strategy: PrefetchAggressive,
|
||||
LookaheadCount: 5,
|
||||
PrefetchSize: 2 * 1024 * 1024, // 2MB
|
||||
ConcurrencyLevel: 3,
|
||||
AdaptiveScaling: true,
|
||||
AdaptiveScaling: true,
|
||||
}
|
||||
bo.cacheStrategies[BatchPatternLinear] = &CacheConfig{
|
||||
Policy: CachePolicyTrainingAware,
|
||||
@@ -181,14 +181,14 @@ func (bo *BatchOptimizer) initializeDefaultStrategies() {
|
||||
Priority: CachePriorityHigh,
|
||||
PreloadBatches: 2,
|
||||
}
|
||||
|
||||
|
||||
// Shuffled batch pattern - conservative prefetching
|
||||
bo.prefetchStrategies[BatchPatternShuffled] = &PrefetchConfig{
|
||||
Strategy: PrefetchBalanced,
|
||||
LookaheadCount: 2,
|
||||
PrefetchSize: 512 * 1024, // 512KB
|
||||
Strategy: PrefetchBalanced,
|
||||
LookaheadCount: 2,
|
||||
PrefetchSize: 512 * 1024, // 512KB
|
||||
ConcurrencyLevel: 2,
|
||||
AdaptiveScaling: true,
|
||||
AdaptiveScaling: true,
|
||||
}
|
||||
bo.cacheStrategies[BatchPatternShuffled] = &CacheConfig{
|
||||
Policy: CachePolicyLRU,
|
||||
@@ -196,14 +196,14 @@ func (bo *BatchOptimizer) initializeDefaultStrategies() {
|
||||
Priority: CachePriorityNormal,
|
||||
PreloadBatches: 1,
|
||||
}
|
||||
|
||||
|
||||
// Multi-GPU pattern - high concurrency
|
||||
bo.prefetchStrategies[BatchPatternMultiGPU] = &PrefetchConfig{
|
||||
Strategy: PrefetchAggressive,
|
||||
LookaheadCount: 8,
|
||||
PrefetchSize: 4 * 1024 * 1024, // 4MB
|
||||
Strategy: PrefetchAggressive,
|
||||
LookaheadCount: 8,
|
||||
PrefetchSize: 4 * 1024 * 1024, // 4MB
|
||||
ConcurrencyLevel: 6,
|
||||
AdaptiveScaling: true,
|
||||
AdaptiveScaling: true,
|
||||
}
|
||||
bo.cacheStrategies[BatchPatternMultiGPU] = &CacheConfig{
|
||||
Policy: CachePolicyML,
|
||||
@@ -217,7 +217,7 @@ func (bo *BatchOptimizer) initializeDefaultStrategies() {
|
||||
func (bo *BatchOptimizer) RecordBatchAccess(inode uint64, offset int64, size int, isRead bool, batchHint string) *BatchInfo {
|
||||
bo.Lock()
|
||||
defer bo.Unlock()
|
||||
|
||||
|
||||
access := BatchAccess{
|
||||
Offset: offset,
|
||||
Size: size,
|
||||
@@ -225,7 +225,7 @@ func (bo *BatchOptimizer) RecordBatchAccess(inode uint64, offset int64, size int
|
||||
IsRead: isRead,
|
||||
BatchHint: batchHint,
|
||||
}
|
||||
|
||||
|
||||
// Add to access history
|
||||
history := bo.accessHistory[inode]
|
||||
history = append(history, access)
|
||||
@@ -233,23 +233,23 @@ func (bo *BatchOptimizer) RecordBatchAccess(inode uint64, offset int64, size int
|
||||
history = history[1:] // Keep only recent accesses
|
||||
}
|
||||
bo.accessHistory[inode] = history
|
||||
|
||||
|
||||
// Detect batch patterns
|
||||
batchInfo := bo.detectBatchPattern(inode, history)
|
||||
if batchInfo != nil {
|
||||
bo.totalBatchesDetected++
|
||||
|
||||
|
||||
// Add to tracking
|
||||
bo.activeBatches[batchInfo.BatchID] = batchInfo
|
||||
bo.inodeToBatches[inode] = append(bo.inodeToBatches[inode], batchInfo)
|
||||
|
||||
|
||||
// Update batch sequence
|
||||
bo.updateBatchSequence(inode, batchInfo)
|
||||
|
||||
glog.V(3).Infof("Detected batch: inode=%d, pattern=%v, size=%d, items=%d",
|
||||
|
||||
glog.V(3).Infof("Detected batch: inode=%d, pattern=%v, size=%d, items=%d",
|
||||
inode, batchInfo.AccessPattern, batchInfo.Size, batchInfo.ItemCount)
|
||||
}
|
||||
|
||||
|
||||
return batchInfo
|
||||
}
|
||||
|
||||
@@ -258,25 +258,29 @@ func (bo *BatchOptimizer) detectBatchPattern(inode uint64, history []BatchAccess
|
||||
if len(history) < 3 {
|
||||
return nil // Need minimum history
|
||||
}
|
||||
|
||||
|
||||
// Look for batch boundaries by analyzing access gaps and patterns
|
||||
recent := history[len(history)-10:] // Look at last 10 accesses
|
||||
startIdx := len(history) - 10
|
||||
if startIdx < 0 {
|
||||
startIdx = 0
|
||||
}
|
||||
recent := history[startIdx:] // Look at last 10 accesses (or all if fewer)
|
||||
if len(recent) < 3 {
|
||||
recent = history
|
||||
}
|
||||
|
||||
|
||||
// Check for batch characteristics
|
||||
batchInfo := bo.analyzePotentialBatch(recent, inode)
|
||||
if batchInfo == nil {
|
||||
return nil
|
||||
}
|
||||
|
||||
|
||||
// Determine access pattern
|
||||
batchInfo.AccessPattern = bo.classifyBatchPattern(batchInfo, recent)
|
||||
|
||||
|
||||
// Calculate performance metrics
|
||||
bo.calculateBatchMetrics(batchInfo, recent)
|
||||
|
||||
|
||||
return batchInfo
|
||||
}
|
||||
|
||||
@@ -285,60 +289,60 @@ func (bo *BatchOptimizer) analyzePotentialBatch(accesses []BatchAccess, inode ui
|
||||
if len(accesses) < 2 {
|
||||
return nil
|
||||
}
|
||||
|
||||
|
||||
// Calculate basic statistics
|
||||
var totalSize int64
|
||||
var itemCount int
|
||||
minOffset := accesses[0].Offset
|
||||
maxOffset := accesses[0].Offset
|
||||
|
||||
|
||||
accessOrder := make([]int64, len(accesses))
|
||||
accessTimes := make([]time.Time, len(accesses))
|
||||
|
||||
|
||||
for i, access := range accesses {
|
||||
totalSize += int64(access.Size)
|
||||
itemCount++
|
||||
|
||||
|
||||
if access.Offset < minOffset {
|
||||
minOffset = access.Offset
|
||||
}
|
||||
if access.Offset > maxOffset {
|
||||
maxOffset = access.Offset
|
||||
}
|
||||
|
||||
|
||||
accessOrder[i] = access.Offset
|
||||
accessTimes[i] = access.AccessTime
|
||||
}
|
||||
|
||||
|
||||
batchSize := maxOffset - minOffset + int64(accesses[len(accesses)-1].Size)
|
||||
|
||||
|
||||
// Check if this qualifies as a batch
|
||||
if batchSize < bo.minBatchSize || batchSize > bo.maxBatchSize {
|
||||
return nil
|
||||
}
|
||||
|
||||
|
||||
// Check temporal locality (accesses should be close in time)
|
||||
timeSpan := accessTimes[len(accessTimes)-1].Sub(accessTimes[0])
|
||||
if timeSpan > 10*time.Minute { // Too spread out in time
|
||||
return nil
|
||||
}
|
||||
|
||||
|
||||
// Create batch info
|
||||
batchID := generateBatchID(inode, minOffset, time.Now())
|
||||
|
||||
|
||||
batchInfo := &BatchInfo{
|
||||
BatchID: batchID,
|
||||
StartOffset: minOffset,
|
||||
EndOffset: maxOffset,
|
||||
Size: batchSize,
|
||||
ItemCount: itemCount,
|
||||
ItemSize: totalSize / int64(itemCount),
|
||||
AccessOrder: accessOrder,
|
||||
AccessTimes: accessTimes,
|
||||
TotalTime: timeSpan,
|
||||
LoadTime: timeSpan, // Initially assume all time is load time
|
||||
BatchID: batchID,
|
||||
StartOffset: minOffset,
|
||||
EndOffset: maxOffset,
|
||||
Size: batchSize,
|
||||
ItemCount: itemCount,
|
||||
ItemSize: totalSize / int64(itemCount),
|
||||
AccessOrder: accessOrder,
|
||||
AccessTimes: accessTimes,
|
||||
TotalTime: timeSpan,
|
||||
LoadTime: timeSpan, // Initially assume all time is load time
|
||||
}
|
||||
|
||||
|
||||
return batchInfo
|
||||
}
|
||||
|
||||
@@ -347,7 +351,7 @@ func (bo *BatchOptimizer) classifyBatchPattern(batch *BatchInfo, accesses []Batc
|
||||
if len(batch.AccessOrder) < 2 {
|
||||
return BatchPatternUnknown
|
||||
}
|
||||
|
||||
|
||||
// Check for linear pattern (sequential offsets)
|
||||
isLinear := true
|
||||
for i := 1; i < len(batch.AccessOrder); i++ {
|
||||
@@ -356,31 +360,31 @@ func (bo *BatchOptimizer) classifyBatchPattern(batch *BatchInfo, accesses []Batc
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if isLinear {
|
||||
return BatchPatternLinear
|
||||
}
|
||||
|
||||
|
||||
// Check for strided pattern (regular gaps)
|
||||
if bo.isStridedPattern(batch.AccessOrder) {
|
||||
return BatchPatternStrided
|
||||
}
|
||||
|
||||
|
||||
// Check for shuffled pattern (randomized order)
|
||||
if bo.isShuffledPattern(batch.AccessOrder) {
|
||||
return BatchPatternShuffled
|
||||
}
|
||||
|
||||
|
||||
// Check for multi-GPU pattern (parallel access indicators)
|
||||
if bo.isMultiGPUPattern(accesses) {
|
||||
return BatchPatternMultiGPU
|
||||
}
|
||||
|
||||
|
||||
// Check for pipelined pattern (overlapping accesses)
|
||||
if bo.isPipelinedPattern(batch.AccessTimes) {
|
||||
return BatchPatternPipelined
|
||||
}
|
||||
|
||||
|
||||
return BatchPatternUnknown
|
||||
}
|
||||
|
||||
@@ -389,13 +393,13 @@ func (bo *BatchOptimizer) isStridedPattern(offsets []int64) bool {
|
||||
if len(offsets) < 3 {
|
||||
return false
|
||||
}
|
||||
|
||||
|
||||
// Calculate stride
|
||||
stride := offsets[1] - offsets[0]
|
||||
if stride <= 0 {
|
||||
return false
|
||||
}
|
||||
|
||||
|
||||
// Check if all accesses follow the same stride
|
||||
consistentStrides := 0
|
||||
for i := 2; i < len(offsets); i++ {
|
||||
@@ -404,9 +408,9 @@ func (bo *BatchOptimizer) isStridedPattern(offsets []int64) bool {
|
||||
consistentStrides++
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// At least 80% of strides should be consistent
|
||||
return float64(consistentStrides) / float64(len(offsets)-2) >= 0.8
|
||||
return float64(consistentStrides)/float64(len(offsets)-2) >= 0.8
|
||||
}
|
||||
|
||||
// isShuffledPattern checks if accesses are in randomized order
|
||||
@@ -414,7 +418,7 @@ func (bo *BatchOptimizer) isShuffledPattern(offsets []int64) bool {
|
||||
if len(offsets) < 5 {
|
||||
return false
|
||||
}
|
||||
|
||||
|
||||
// Count inversions (out-of-order pairs)
|
||||
inversions := 0
|
||||
for i := 0; i < len(offsets); i++ {
|
||||
@@ -424,10 +428,10 @@ func (bo *BatchOptimizer) isShuffledPattern(offsets []int64) bool {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
totalPairs := len(offsets) * (len(offsets) - 1) / 2
|
||||
inversionRate := float64(inversions) / float64(totalPairs)
|
||||
|
||||
|
||||
// High inversion rate suggests shuffling
|
||||
return inversionRate > 0.3
|
||||
}
|
||||
@@ -437,22 +441,22 @@ func (bo *BatchOptimizer) isMultiGPUPattern(accesses []BatchAccess) bool {
|
||||
// Look for multiple concurrent access streams
|
||||
// This is a simplified heuristic - in practice, this would need more
|
||||
// sophisticated detection based on process info, etc.
|
||||
|
||||
|
||||
if len(accesses) < 4 {
|
||||
return false
|
||||
}
|
||||
|
||||
|
||||
// Check for concurrent accesses (multiple accesses in very short time)
|
||||
concurrentWindows := 0
|
||||
windowSize := 100 * time.Millisecond
|
||||
|
||||
|
||||
for i := 0; i < len(accesses)-1; i++ {
|
||||
timeDiff := accesses[i+1].AccessTime.Sub(accesses[i].AccessTime)
|
||||
if timeDiff < windowSize {
|
||||
concurrentWindows++
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// If many accesses are concurrent, might be multi-GPU
|
||||
return float64(concurrentWindows)/float64(len(accesses)) > 0.5
|
||||
}
|
||||
@@ -462,30 +466,30 @@ func (bo *BatchOptimizer) isPipelinedPattern(accessTimes []time.Time) bool {
|
||||
if len(accessTimes) < 3 {
|
||||
return false
|
||||
}
|
||||
|
||||
|
||||
// Look for regular, overlapping timing patterns
|
||||
intervals := make([]time.Duration, len(accessTimes)-1)
|
||||
for i := 1; i < len(accessTimes); i++ {
|
||||
intervals[i-1] = accessTimes[i].Sub(accessTimes[i-1])
|
||||
}
|
||||
|
||||
|
||||
// Calculate coefficient of variation for intervals
|
||||
var sum, sumSq time.Duration
|
||||
for _, interval := range intervals {
|
||||
sum += interval
|
||||
sumSq += interval * interval
|
||||
}
|
||||
|
||||
|
||||
n := time.Duration(len(intervals))
|
||||
mean := sum / n
|
||||
if mean == 0 {
|
||||
return false
|
||||
}
|
||||
|
||||
|
||||
// Calculate variance and CV
|
||||
variance := (sumSq / n) - (mean * mean)
|
||||
cv := float64(variance) / float64(mean * mean)
|
||||
|
||||
cv := float64(variance) / float64(mean*mean)
|
||||
|
||||
// Low coefficient of variation suggests regular pipelining
|
||||
return cv < 0.2
|
||||
}
|
||||
@@ -495,18 +499,18 @@ func (bo *BatchOptimizer) calculateBatchMetrics(batch *BatchInfo, accesses []Bat
|
||||
if len(batch.AccessTimes) < 2 {
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
// Calculate throughput
|
||||
timeSpan := batch.AccessTimes[len(batch.AccessTimes)-1].Sub(batch.AccessTimes[0])
|
||||
if timeSpan > 0 {
|
||||
batch.Throughput = float64(batch.ItemCount) / timeSpan.Seconds()
|
||||
}
|
||||
|
||||
|
||||
// Estimate processing vs load time (heuristic)
|
||||
// In practice, this would need more sophisticated measurement
|
||||
avgItemTime := timeSpan / time.Duration(batch.ItemCount)
|
||||
batch.ProcessTime = avgItemTime / 2 // Assume 50% processing time
|
||||
batch.LoadTime = avgItemTime / 2 // Assume 50% load time
|
||||
batch.ProcessTime = avgItemTime / 2 // Assume 50% processing time
|
||||
batch.LoadTime = avgItemTime / 2 // Assume 50% load time
|
||||
}
|
||||
|
||||
// updateBatchSequence updates the batch sequence for an inode
|
||||
@@ -521,26 +525,26 @@ func (bo *BatchOptimizer) updateBatchSequence(inode uint64, newBatch *BatchInfo)
|
||||
}
|
||||
bo.batchSequences[inode] = sequence
|
||||
}
|
||||
|
||||
|
||||
sequence.Lock()
|
||||
defer sequence.Unlock()
|
||||
|
||||
|
||||
// Link batches
|
||||
if len(sequence.Batches) > 0 {
|
||||
lastBatch := sequence.Batches[len(sequence.Batches)-1]
|
||||
lastBatch.NextBatch = newBatch
|
||||
newBatch.PreviousBatch = lastBatch
|
||||
}
|
||||
|
||||
|
||||
sequence.Batches = append(sequence.Batches, newBatch)
|
||||
sequence.LastAccess = time.Now()
|
||||
|
||||
|
||||
// Update sequence pattern based on majority of batches
|
||||
bo.updateSequencePattern(sequence)
|
||||
|
||||
|
||||
// Make predictions for next batch
|
||||
bo.updateSequencePredictions(sequence)
|
||||
|
||||
|
||||
// Keep sequence size manageable
|
||||
if len(sequence.Batches) > 100 {
|
||||
sequence.Batches = sequence.Batches[len(sequence.Batches)-50:] // Keep last 50 batches
|
||||
@@ -552,13 +556,13 @@ func (bo *BatchOptimizer) updateSequencePattern(sequence *BatchSequence) {
|
||||
if len(sequence.Batches) < 3 {
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
// Count patterns
|
||||
patternCounts := make(map[BatchAccessPattern]int)
|
||||
for _, batch := range sequence.Batches {
|
||||
patternCounts[batch.AccessPattern]++
|
||||
}
|
||||
|
||||
|
||||
// Find most common pattern
|
||||
maxCount := 0
|
||||
var dominantPattern BatchAccessPattern
|
||||
@@ -568,7 +572,7 @@ func (bo *BatchOptimizer) updateSequencePattern(sequence *BatchSequence) {
|
||||
dominantPattern = pattern
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
sequence.Pattern = dominantPattern
|
||||
}
|
||||
|
||||
@@ -577,12 +581,12 @@ func (bo *BatchOptimizer) updateSequencePredictions(sequence *BatchSequence) {
|
||||
if len(sequence.Batches) < 2 {
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
recent := sequence.Batches[len(sequence.Batches)-3:] // Last 3 batches
|
||||
if len(recent) < 2 {
|
||||
recent = sequence.Batches
|
||||
}
|
||||
|
||||
|
||||
// Predict next batch offset based on pattern
|
||||
switch sequence.Pattern {
|
||||
case BatchPatternLinear:
|
||||
@@ -595,7 +599,7 @@ func (bo *BatchOptimizer) updateSequencePredictions(sequence *BatchSequence) {
|
||||
sequence.NextBatchSize = lastBatch.Size
|
||||
sequence.Confidence = 0.8
|
||||
}
|
||||
|
||||
|
||||
case BatchPatternStrided:
|
||||
// Regular stride
|
||||
if len(recent) >= 3 {
|
||||
@@ -604,7 +608,7 @@ func (bo *BatchOptimizer) updateSequencePredictions(sequence *BatchSequence) {
|
||||
sequence.NextBatchSize = recent[len(recent)-1].Size
|
||||
sequence.Confidence = 0.7
|
||||
}
|
||||
|
||||
|
||||
default:
|
||||
// Lower confidence for unpredictable patterns
|
||||
sequence.Confidence = 0.3
|
||||
@@ -615,60 +619,60 @@ func (bo *BatchOptimizer) updateSequencePredictions(sequence *BatchSequence) {
|
||||
func (bo *BatchOptimizer) GetBatchRecommendations(inode uint64) *BatchOptimizationRecommendations {
|
||||
bo.RLock()
|
||||
defer bo.RUnlock()
|
||||
|
||||
|
||||
sequence := bo.batchSequences[inode]
|
||||
if sequence == nil {
|
||||
return &BatchOptimizationRecommendations{
|
||||
ShouldOptimize: false,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
sequence.RLock()
|
||||
defer sequence.RUnlock()
|
||||
|
||||
|
||||
prefetchConfig := bo.prefetchStrategies[sequence.Pattern]
|
||||
cacheConfig := bo.cacheStrategies[sequence.Pattern]
|
||||
|
||||
|
||||
if prefetchConfig == nil {
|
||||
prefetchConfig = bo.prefetchStrategies[BatchPatternUnknown]
|
||||
}
|
||||
if cacheConfig == nil {
|
||||
cacheConfig = bo.cacheStrategies[BatchPatternUnknown]
|
||||
}
|
||||
|
||||
|
||||
recommendations := &BatchOptimizationRecommendations{
|
||||
ShouldOptimize: true,
|
||||
Pattern: sequence.Pattern,
|
||||
PrefetchSize: prefetchConfig.PrefetchSize,
|
||||
PrefetchCount: prefetchConfig.LookaheadCount,
|
||||
CachePriority: cacheConfig.Priority,
|
||||
CacheRetention: cacheConfig.RetentionTime,
|
||||
NextBatchOffset: sequence.NextBatchOffset,
|
||||
NextBatchSize: sequence.NextBatchSize,
|
||||
Confidence: sequence.Confidence,
|
||||
ShouldOptimize: true,
|
||||
Pattern: sequence.Pattern,
|
||||
PrefetchSize: prefetchConfig.PrefetchSize,
|
||||
PrefetchCount: prefetchConfig.LookaheadCount,
|
||||
CachePriority: cacheConfig.Priority,
|
||||
CacheRetention: cacheConfig.RetentionTime,
|
||||
NextBatchOffset: sequence.NextBatchOffset,
|
||||
NextBatchSize: sequence.NextBatchSize,
|
||||
Confidence: sequence.Confidence,
|
||||
}
|
||||
|
||||
|
||||
return recommendations
|
||||
}
|
||||
|
||||
// BatchOptimizationRecommendations holds batch optimization recommendations
|
||||
type BatchOptimizationRecommendations struct {
|
||||
ShouldOptimize bool `json:"should_optimize"`
|
||||
Pattern BatchAccessPattern `json:"pattern"`
|
||||
PrefetchSize int64 `json:"prefetch_size"`
|
||||
PrefetchCount int `json:"prefetch_count"`
|
||||
CachePriority CachePriority `json:"cache_priority"`
|
||||
CacheRetention time.Duration `json:"cache_retention"`
|
||||
NextBatchOffset int64 `json:"next_batch_offset"`
|
||||
NextBatchSize int64 `json:"next_batch_size"`
|
||||
Confidence float64 `json:"confidence"`
|
||||
ShouldOptimize bool `json:"should_optimize"`
|
||||
Pattern BatchAccessPattern `json:"pattern"`
|
||||
PrefetchSize int64 `json:"prefetch_size"`
|
||||
PrefetchCount int `json:"prefetch_count"`
|
||||
CachePriority CachePriority `json:"cache_priority"`
|
||||
CacheRetention time.Duration `json:"cache_retention"`
|
||||
NextBatchOffset int64 `json:"next_batch_offset"`
|
||||
NextBatchSize int64 `json:"next_batch_size"`
|
||||
Confidence float64 `json:"confidence"`
|
||||
}
|
||||
|
||||
// GetBatchMetrics returns comprehensive batch optimization metrics
|
||||
func (bo *BatchOptimizer) GetBatchMetrics() BatchOptimizerMetrics {
|
||||
bo.RLock()
|
||||
defer bo.RUnlock()
|
||||
|
||||
|
||||
metrics := BatchOptimizerMetrics{
|
||||
TotalBatchesDetected: bo.totalBatchesDetected,
|
||||
ActiveBatches: int64(len(bo.activeBatches)),
|
||||
@@ -677,32 +681,32 @@ func (bo *BatchOptimizer) GetBatchMetrics() BatchOptimizerMetrics {
|
||||
OptimizationMisses: bo.optimizationMisses,
|
||||
PatternCounts: make(map[BatchAccessPattern]int64),
|
||||
}
|
||||
|
||||
|
||||
// Count patterns
|
||||
for _, batch := range bo.activeBatches {
|
||||
batch.RLock()
|
||||
metrics.PatternCounts[batch.AccessPattern]++
|
||||
batch.RUnlock()
|
||||
}
|
||||
|
||||
|
||||
// Calculate hit rate
|
||||
totalAttempts := bo.optimizationHits + bo.optimizationMisses
|
||||
if totalAttempts > 0 {
|
||||
metrics.OptimizationHitRate = float64(bo.optimizationHits) / float64(totalAttempts)
|
||||
}
|
||||
|
||||
|
||||
return metrics
|
||||
}
|
||||
|
||||
// BatchOptimizerMetrics holds metrics for batch optimization
|
||||
type BatchOptimizerMetrics struct {
|
||||
TotalBatchesDetected int64 `json:"total_batches_detected"`
|
||||
ActiveBatches int64 `json:"active_batches"`
|
||||
CompletedBatches int64 `json:"completed_batches"`
|
||||
OptimizationHits int64 `json:"optimization_hits"`
|
||||
OptimizationMisses int64 `json:"optimization_misses"`
|
||||
OptimizationHitRate float64 `json:"optimization_hit_rate"`
|
||||
PatternCounts map[BatchAccessPattern]int64 `json:"pattern_counts"`
|
||||
TotalBatchesDetected int64 `json:"total_batches_detected"`
|
||||
ActiveBatches int64 `json:"active_batches"`
|
||||
CompletedBatches int64 `json:"completed_batches"`
|
||||
OptimizationHits int64 `json:"optimization_hits"`
|
||||
OptimizationMisses int64 `json:"optimization_misses"`
|
||||
OptimizationHitRate float64 `json:"optimization_hit_rate"`
|
||||
PatternCounts map[BatchAccessPattern]int64 `json:"pattern_counts"`
|
||||
}
|
||||
|
||||
// cleanupRoutine performs periodic cleanup of old batch information
|
||||
@@ -721,21 +725,21 @@ func (bo *BatchOptimizer) cleanupRoutine() {
|
||||
func (bo *BatchOptimizer) performCleanup() {
|
||||
bo.Lock()
|
||||
defer bo.Unlock()
|
||||
|
||||
|
||||
now := time.Now()
|
||||
cutoff := now.Add(-30 * time.Minute) // Remove batches older than 30 minutes
|
||||
|
||||
|
||||
// Clean up completed batches
|
||||
for id, batch := range bo.completedBatches {
|
||||
batch.RLock()
|
||||
shouldRemove := len(batch.AccessTimes) > 0 && batch.AccessTimes[0].Before(cutoff)
|
||||
batch.RUnlock()
|
||||
|
||||
|
||||
if shouldRemove {
|
||||
delete(bo.completedBatches, id)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Clean up access history
|
||||
for inode, history := range bo.accessHistory {
|
||||
filtered := make([]BatchAccess, 0, len(history))
|
||||
@@ -744,14 +748,14 @@ func (bo *BatchOptimizer) performCleanup() {
|
||||
filtered = append(filtered, access)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if len(filtered) == 0 {
|
||||
delete(bo.accessHistory, inode)
|
||||
} else {
|
||||
bo.accessHistory[inode] = filtered
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Clean up batch sequences
|
||||
for inode, sequence := range bo.batchSequences {
|
||||
sequence.Lock()
|
||||
@@ -762,7 +766,7 @@ func (bo *BatchOptimizer) performCleanup() {
|
||||
}
|
||||
sequence.Unlock()
|
||||
}
|
||||
|
||||
|
||||
glog.V(4).Infof("Batch optimizer cleanup completed")
|
||||
}
|
||||
|
||||
@@ -771,9 +775,9 @@ func (bo *BatchOptimizer) Shutdown() {
|
||||
if bo.cleanupTicker != nil {
|
||||
bo.cleanupTicker.Stop()
|
||||
}
|
||||
|
||||
|
||||
close(bo.stopCleanup)
|
||||
|
||||
|
||||
glog.V(1).Infof("Batch optimizer shutdown complete")
|
||||
}
|
||||
|
||||
|
367
weed/mount/ml/optimization_engine_test.go
Normal file
367
weed/mount/ml/optimization_engine_test.go
Normal file
@@ -0,0 +1,367 @@
|
||||
package ml
|
||||
|
||||
import (
|
||||
"testing"
|
||||
)
|
||||
|
||||
// TestOptimizationEngine_Basic tests the basic functionality of the optimization engine
|
||||
func TestOptimizationEngine_Basic(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
defer engine.Shutdown()
|
||||
|
||||
if engine == nil {
|
||||
t.Fatal("Should create optimization engine")
|
||||
}
|
||||
|
||||
if !engine.enabled {
|
||||
t.Error("Engine should be enabled")
|
||||
}
|
||||
|
||||
// Check that default rules and strategies are loaded
|
||||
if len(engine.rules) == 0 {
|
||||
t.Error("Should have default rules loaded")
|
||||
}
|
||||
|
||||
if len(engine.strategies) == 0 {
|
||||
t.Error("Should have default strategies loaded")
|
||||
}
|
||||
|
||||
t.Logf("Engine initialized with %d rules, %d strategies", len(engine.rules), len(engine.strategies))
|
||||
}
|
||||
|
||||
// TestOptimizationEngine_RuleEvaluation tests rule evaluation
|
||||
func TestOptimizationEngine_RuleEvaluation(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
defer engine.Shutdown()
|
||||
|
||||
// Create test context for sequential access of a large model file
|
||||
context := &OptimizationContext{
|
||||
FilePath: "/models/large_model.pth",
|
||||
FileSize: 2 * 1024 * 1024 * 1024, // 2GB
|
||||
FileType: "model",
|
||||
AccessPattern: SequentialAccess,
|
||||
AccessFrequency: 10,
|
||||
Framework: "pytorch",
|
||||
WorkloadType: "training",
|
||||
}
|
||||
|
||||
// Apply optimizations
|
||||
result := engine.OptimizeAccess(context)
|
||||
|
||||
if result == nil {
|
||||
t.Fatal("Should return optimization result")
|
||||
}
|
||||
|
||||
if !result.Applied {
|
||||
t.Error("Should apply optimizations for large model file with sequential access")
|
||||
}
|
||||
|
||||
if result.Confidence < 0.5 {
|
||||
t.Errorf("Expected confidence >= 0.5, got %.2f", result.Confidence)
|
||||
}
|
||||
|
||||
if len(result.Optimizations) == 0 {
|
||||
t.Error("Should have applied optimizations")
|
||||
}
|
||||
|
||||
t.Logf("Applied %d optimizations with confidence %.2f",
|
||||
len(result.Optimizations), result.Confidence)
|
||||
|
||||
for i, opt := range result.Optimizations {
|
||||
t.Logf("Optimization %d: type=%s, target=%s", i+1, opt.Type, opt.Target)
|
||||
}
|
||||
}
|
||||
|
||||
// TestOptimizationEngine_FrameworkDetection tests framework detection
|
||||
func TestOptimizationEngine_FrameworkDetection(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
defer engine.Shutdown()
|
||||
|
||||
testCases := []struct {
|
||||
filePath string
|
||||
expectedFramework string
|
||||
}{
|
||||
{"/models/model.pth", "pytorch"},
|
||||
{"/models/model.pt", "pytorch"},
|
||||
{"/models/saved_model.pb", "tensorflow"},
|
||||
{"/models/model.h5", "tensorflow"},
|
||||
{"/models/checkpoint.ckpt", "tensorflow"},
|
||||
{"/data/dataset.tfrecord", "tensorflow"},
|
||||
{"/unknown/file.bin", ""},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
framework := engine.detectFramework(tc.filePath, nil)
|
||||
|
||||
if tc.expectedFramework == "" {
|
||||
if framework != "" {
|
||||
t.Errorf("File %s: expected no framework detection, got %s", tc.filePath, framework)
|
||||
}
|
||||
} else {
|
||||
if framework != tc.expectedFramework {
|
||||
t.Errorf("File %s: expected framework %s, got %s",
|
||||
tc.filePath, tc.expectedFramework, framework)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestOptimizationEngine_FileTypeDetection tests file type detection
|
||||
func TestOptimizationEngine_FileTypeDetection(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
defer engine.Shutdown()
|
||||
|
||||
testCases := []struct {
|
||||
filePath string
|
||||
expectedType string
|
||||
}{
|
||||
{"/models/model.pth", "model"},
|
||||
{"/data/dataset.csv", "dataset"},
|
||||
{"/configs/config.yaml", "config"},
|
||||
{"/logs/training.log", "log"},
|
||||
{"/unknown/file.bin", "unknown"},
|
||||
}
|
||||
|
||||
for _, tc := range testCases {
|
||||
fileType := engine.detectFileType(tc.filePath)
|
||||
|
||||
if fileType != tc.expectedType {
|
||||
t.Errorf("File %s: expected type %s, got %s",
|
||||
tc.filePath, tc.expectedType, fileType)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestOptimizationEngine_ConditionEvaluation tests condition evaluation
|
||||
func TestOptimizationEngine_ConditionEvaluation(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
defer engine.Shutdown()
|
||||
|
||||
context := &OptimizationContext{
|
||||
FilePath: "/models/test.pth",
|
||||
FileSize: 5 * 1024 * 1024, // 5MB
|
||||
FileType: "model",
|
||||
AccessPattern: SequentialAccess,
|
||||
Framework: "pytorch",
|
||||
}
|
||||
|
||||
// Test various condition types
|
||||
testConditions := []struct {
|
||||
condition RuleCondition
|
||||
expected bool
|
||||
}{
|
||||
{
|
||||
condition: RuleCondition{
|
||||
Type: "file_pattern",
|
||||
Property: "extension",
|
||||
Operator: "equals",
|
||||
Value: ".pth",
|
||||
},
|
||||
expected: true,
|
||||
},
|
||||
{
|
||||
condition: RuleCondition{
|
||||
Type: "file_context",
|
||||
Property: "size",
|
||||
Operator: "greater_than",
|
||||
Value: 1024 * 1024, // 1MB
|
||||
},
|
||||
expected: true,
|
||||
},
|
||||
{
|
||||
condition: RuleCondition{
|
||||
Type: "access_pattern",
|
||||
Property: "pattern_type",
|
||||
Operator: "equals",
|
||||
Value: "sequential",
|
||||
},
|
||||
expected: true,
|
||||
},
|
||||
{
|
||||
condition: RuleCondition{
|
||||
Type: "workload_context",
|
||||
Property: "framework",
|
||||
Operator: "equals",
|
||||
Value: "tensorflow",
|
||||
},
|
||||
expected: false,
|
||||
},
|
||||
}
|
||||
|
||||
for i, tc := range testConditions {
|
||||
result := engine.evaluateCondition(tc.condition, context)
|
||||
if result != tc.expected {
|
||||
t.Errorf("Condition %d: expected %v, got %v", i+1, tc.expected, result)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestOptimizationEngine_PluginSystem tests the plugin system
|
||||
func TestOptimizationEngine_PluginSystem(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
defer engine.Shutdown()
|
||||
|
||||
// Register a test plugin
|
||||
plugin := NewPyTorchPlugin()
|
||||
err := engine.RegisterPlugin(plugin)
|
||||
if err != nil {
|
||||
t.Fatalf("Failed to register plugin: %v", err)
|
||||
}
|
||||
|
||||
// Verify plugin is registered
|
||||
if _, exists := engine.plugins["pytorch"]; !exists {
|
||||
t.Error("PyTorch plugin should be registered")
|
||||
}
|
||||
|
||||
// Test framework detection through plugin
|
||||
confidence := plugin.DetectFramework("/models/test.pth", nil)
|
||||
if confidence < 0.5 {
|
||||
t.Errorf("Expected high confidence for .pth file, got %.2f", confidence)
|
||||
}
|
||||
|
||||
// Test optimization hints
|
||||
context := &OptimizationContext{
|
||||
FilePath: "/models/test.pth",
|
||||
FileSize: 100 * 1024 * 1024, // 100MB
|
||||
FileType: "model",
|
||||
Framework: "pytorch",
|
||||
}
|
||||
|
||||
hints := plugin.GetOptimizationHints(context)
|
||||
if len(hints) == 0 {
|
||||
t.Error("Plugin should provide optimization hints")
|
||||
}
|
||||
|
||||
t.Logf("Plugin provided %d optimization hints", len(hints))
|
||||
}
|
||||
|
||||
// TestOptimizationEngine_UsagePatterns tests usage pattern learning
|
||||
func TestOptimizationEngine_UsagePatterns(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
defer engine.Shutdown()
|
||||
|
||||
context := &OptimizationContext{
|
||||
FilePath: "/models/training_model.pth",
|
||||
FileSize: 50 * 1024 * 1024, // 50MB
|
||||
FileType: "model",
|
||||
AccessPattern: SequentialAccess,
|
||||
Framework: "pytorch",
|
||||
WorkloadType: "training",
|
||||
}
|
||||
|
||||
// Apply optimization multiple times to build usage patterns
|
||||
for i := 0; i < 5; i++ {
|
||||
result := engine.OptimizeAccess(context)
|
||||
if result == nil {
|
||||
t.Fatalf("Optimization %d failed", i+1)
|
||||
}
|
||||
}
|
||||
|
||||
// Check that usage patterns are being tracked
|
||||
if len(engine.usagePatterns) == 0 {
|
||||
t.Error("Should have learned usage patterns")
|
||||
}
|
||||
|
||||
// Verify pattern characteristics
|
||||
for patternKey, pattern := range engine.usagePatterns {
|
||||
t.Logf("Learned pattern: %s (frequency=%d, success_rate=%.2f)",
|
||||
patternKey, pattern.Frequency, pattern.SuccessRate)
|
||||
|
||||
if pattern.Frequency < 1 {
|
||||
t.Errorf("Pattern %s should have frequency >= 1", patternKey)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestOptimizationEngine_Metrics tests metrics collection
|
||||
func TestOptimizationEngine_Metrics(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
defer engine.Shutdown()
|
||||
|
||||
metrics := engine.GetMetrics()
|
||||
|
||||
if metrics == nil {
|
||||
t.Fatal("Should return metrics")
|
||||
}
|
||||
|
||||
expectedKeys := []string{"enabled", "rules_count", "templates_count", "strategies_count"}
|
||||
|
||||
for _, key := range expectedKeys {
|
||||
if _, exists := metrics[key]; !exists {
|
||||
t.Errorf("Metrics should contain key: %s", key)
|
||||
}
|
||||
}
|
||||
|
||||
if metrics["enabled"] != true {
|
||||
t.Error("Metrics should show engine as enabled")
|
||||
}
|
||||
|
||||
t.Logf("Engine metrics: %+v", metrics)
|
||||
}
|
||||
|
||||
// TestOptimizationEngine_ConfigurationDriven tests configuration-driven optimization
|
||||
func TestOptimizationEngine_ConfigurationDriven(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
defer engine.Shutdown()
|
||||
|
||||
// Test that the engine can apply optimizations based on its loaded configuration
|
||||
context := &OptimizationContext{
|
||||
FilePath: "/data/dataset.csv",
|
||||
FileSize: 10 * 1024 * 1024, // 10MB
|
||||
FileType: "dataset",
|
||||
AccessPattern: SequentialAccess,
|
||||
Framework: "",
|
||||
WorkloadType: "training",
|
||||
BatchSize: 32,
|
||||
}
|
||||
|
||||
result := engine.OptimizeAccess(context)
|
||||
|
||||
if result == nil {
|
||||
t.Fatal("Should return optimization result")
|
||||
}
|
||||
|
||||
// The engine should make intelligent decisions based on context
|
||||
if result.Applied && len(result.Optimizations) > 0 {
|
||||
t.Logf("Successfully applied %d optimizations", len(result.Optimizations))
|
||||
|
||||
for _, opt := range result.Optimizations {
|
||||
if opt.Type == "" || opt.Target == "" {
|
||||
t.Error("Optimization should have valid type and target")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if len(result.Recommendations) > 0 {
|
||||
t.Logf("Generated %d recommendations", len(result.Recommendations))
|
||||
for _, rec := range result.Recommendations {
|
||||
t.Logf("Recommendation: %s", rec)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TestOptimizationEngine_Shutdown tests proper shutdown
|
||||
func TestOptimizationEngine_Shutdown(t *testing.T) {
|
||||
engine := NewOptimizationEngine(true)
|
||||
|
||||
if !engine.enabled {
|
||||
t.Error("Engine should start enabled")
|
||||
}
|
||||
|
||||
engine.Shutdown()
|
||||
|
||||
if engine.enabled {
|
||||
t.Error("Engine should be disabled after shutdown")
|
||||
}
|
||||
|
||||
// Test that optimization doesn't work after shutdown
|
||||
context := &OptimizationContext{
|
||||
FilePath: "/test.pth",
|
||||
FileSize: 1024,
|
||||
}
|
||||
|
||||
result := engine.OptimizeAccess(context)
|
||||
if result.Applied {
|
||||
t.Error("Should not apply optimizations after shutdown")
|
||||
}
|
||||
}
|
@@ -9,15 +9,23 @@ import (
|
||||
|
||||
// MockChunkCache for testing
|
||||
type MockChunkCache struct{}
|
||||
|
||||
func (m *MockChunkCache) HasChunk(fileId string, chunkOffset int64) bool { return false }
|
||||
func (m *MockChunkCache) IsInCache(fileId string, forRead bool) bool { return false }
|
||||
func (m *MockChunkCache) ReadChunk(fileId string, chunkOffset int64, buffer []byte) (int, error) { return 0, nil }
|
||||
func (m *MockChunkCache) ReadChunkAt(buffer []byte, fileId string, offset uint64) (int, error) { return 0, nil }
|
||||
func (m *MockChunkCache) WriteChunk(fileId string, chunkOffset int64, buffer []byte) error { return nil }
|
||||
func (m *MockChunkCache) DeleteFileChunks(fileId string) {}
|
||||
func (m *MockChunkCache) GetMetrics() interface{} { return struct{}{} } // Return empty struct
|
||||
func (m *MockChunkCache) GetMaxFilePartSizeInCache() uint64 { return 64 * 1024 * 1024 } // 64MB default
|
||||
func (m *MockChunkCache) Shutdown() {}
|
||||
func (m *MockChunkCache) IsInCache(fileId string, forRead bool) bool { return false }
|
||||
func (m *MockChunkCache) ReadChunk(fileId string, chunkOffset int64, buffer []byte) (int, error) {
|
||||
return 0, nil
|
||||
}
|
||||
func (m *MockChunkCache) ReadChunkAt(buffer []byte, fileId string, offset uint64) (int, error) {
|
||||
return 0, nil
|
||||
}
|
||||
func (m *MockChunkCache) WriteChunk(fileId string, chunkOffset int64, buffer []byte) error {
|
||||
return nil
|
||||
}
|
||||
func (m *MockChunkCache) SetChunk(fileId string, buffer []byte) {}
|
||||
func (m *MockChunkCache) DeleteFileChunks(fileId string) {}
|
||||
func (m *MockChunkCache) GetMetrics() interface{} { return struct{}{} } // Return empty struct
|
||||
func (m *MockChunkCache) GetMaxFilePartSizeInCache() uint64 { return 64 * 1024 * 1024 } // 64MB default
|
||||
func (m *MockChunkCache) Shutdown() {}
|
||||
|
||||
// MockLookupFileId for testing
|
||||
func MockLookupFileId(ctx context.Context, fileId string) (targetUrls []string, err error) {
|
||||
@@ -79,9 +87,9 @@ func TestPhase4_GPUMemoryCoordinator_Basic(t *testing.T) {
|
||||
if coordinator == nil {
|
||||
t.Fatal("Should create GPU coordinator")
|
||||
}
|
||||
|
||||
|
||||
t.Log("GPU coordinator created successfully (detailed GPU operations would require actual GPU hardware)")
|
||||
|
||||
|
||||
// Test that it doesn't crash on basic operations
|
||||
t.Logf("GPU coordinator basic functionality verified")
|
||||
|
||||
@@ -117,9 +125,9 @@ func TestPhase4_ServingOptimizer_Basic(t *testing.T) {
|
||||
|
||||
// Test model registration (basic structure)
|
||||
modelInfo := &ModelServingInfo{
|
||||
ModelID: "resnet50-v1",
|
||||
ModelPath: "/models/resnet50.pth",
|
||||
Framework: "pytorch",
|
||||
ModelID: "resnet50-v1",
|
||||
ModelPath: "/models/resnet50.pth",
|
||||
Framework: "pytorch",
|
||||
ServingPattern: ServingPatternRealtimeInference,
|
||||
}
|
||||
|
||||
@@ -158,19 +166,19 @@ func TestPhase4_TensorOptimizer_Basic(t *testing.T) {
|
||||
func TestPhase4_MLOptimization_AdvancedIntegration(t *testing.T) {
|
||||
// Create ML configuration with all Phase 4 features enabled
|
||||
config := &MLConfig{
|
||||
PrefetchWorkers: 8,
|
||||
PrefetchQueueSize: 100,
|
||||
PrefetchTimeout: 30 * time.Second,
|
||||
EnableMLHeuristics: true,
|
||||
SequentialThreshold: 3,
|
||||
ConfidenceThreshold: 0.6,
|
||||
MaxPrefetchAhead: 8,
|
||||
PrefetchBatchSize: 3,
|
||||
PrefetchWorkers: 8,
|
||||
PrefetchQueueSize: 100,
|
||||
PrefetchTimeout: 30 * time.Second,
|
||||
EnableMLHeuristics: true,
|
||||
SequentialThreshold: 3,
|
||||
ConfidenceThreshold: 0.6,
|
||||
MaxPrefetchAhead: 8,
|
||||
PrefetchBatchSize: 3,
|
||||
EnableWorkloadCoordination: true,
|
||||
EnableGPUCoordination: true,
|
||||
EnableDistributedTraining: true,
|
||||
EnableModelServing: true,
|
||||
EnableTensorOptimization: true,
|
||||
EnableGPUCoordination: true,
|
||||
EnableDistributedTraining: true,
|
||||
EnableModelServing: true,
|
||||
EnableTensorOptimization: true,
|
||||
}
|
||||
|
||||
mockChunkCache := &MockChunkCache{}
|
||||
@@ -203,9 +211,9 @@ func TestPhase4_MLOptimization_AdvancedIntegration(t *testing.T) {
|
||||
|
||||
// Register model for serving optimization
|
||||
modelInfo := &ModelServingInfo{
|
||||
ModelID: "bert-large",
|
||||
ModelPath: "/models/bert-large.bin",
|
||||
Framework: "transformers",
|
||||
ModelID: "bert-large",
|
||||
ModelPath: "/models/bert-large.bin",
|
||||
Framework: "transformers",
|
||||
ServingPattern: ServingPatternRealtimeInference,
|
||||
}
|
||||
mlOpt.ServingOptimizer.RegisterModel(modelInfo)
|
||||
@@ -255,7 +263,7 @@ func TestPhase4_ConcurrentOperations(t *testing.T) {
|
||||
}(i)
|
||||
}
|
||||
|
||||
// Concurrent GPU coordination operations
|
||||
// Concurrent GPU coordination operations
|
||||
for i := 0; i < numConcurrentOps; i++ {
|
||||
go func(index int) {
|
||||
defer wg.Done()
|
||||
@@ -283,9 +291,9 @@ func TestPhase4_ConcurrentOperations(t *testing.T) {
|
||||
go func(index int) {
|
||||
defer wg.Done()
|
||||
modelInfo := &ModelServingInfo{
|
||||
ModelID: "concurrent-model-" + string(rune('0'+index)),
|
||||
ModelPath: "/models/model-" + string(rune('0'+index)) + ".bin",
|
||||
Framework: "pytorch",
|
||||
ModelID: "concurrent-model-" + string(rune('0'+index)),
|
||||
ModelPath: "/models/model-" + string(rune('0'+index)) + ".bin",
|
||||
Framework: "pytorch",
|
||||
ServingPattern: ServingPatternRealtimeInference,
|
||||
}
|
||||
mlOpt.ServingOptimizer.RegisterModel(modelInfo)
|
||||
@@ -324,7 +332,7 @@ func TestPhase4_ConcurrentOperations(t *testing.T) {
|
||||
func TestPhase4_PerformanceImpact(t *testing.T) {
|
||||
// Test with Phase 4 features disabled
|
||||
configBasic := DefaultMLConfig()
|
||||
|
||||
|
||||
mockChunkCache := &MockChunkCache{}
|
||||
startTime := time.Now()
|
||||
mlOptBasic := NewMLOptimization(configBasic, mockChunkCache, MockLookupFileId)
|
||||
@@ -346,7 +354,7 @@ func TestPhase4_PerformanceImpact(t *testing.T) {
|
||||
|
||||
// Performance impact should be reasonable (less than 10x slower)
|
||||
performanceRatio := float64(advancedInitTime) / float64(basicInitTime)
|
||||
t.Logf("Basic init time: %v, Advanced init time: %v, Ratio: %.2f",
|
||||
t.Logf("Basic init time: %v, Advanced init time: %v, Ratio: %.2f",
|
||||
basicInitTime, advancedInitTime, performanceRatio)
|
||||
|
||||
if performanceRatio > 10.0 {
|
||||
@@ -357,7 +365,7 @@ func TestPhase4_PerformanceImpact(t *testing.T) {
|
||||
basicMemory := estimateMemoryUsage(mlOptBasic)
|
||||
advancedMemory := estimateMemoryUsage(mlOptAdvanced)
|
||||
memoryRatio := float64(advancedMemory) / float64(basicMemory)
|
||||
|
||||
|
||||
t.Logf("Basic memory: %d bytes, Advanced memory: %d bytes, Ratio: %.2f",
|
||||
basicMemory, advancedMemory, memoryRatio)
|
||||
|
||||
@@ -371,7 +379,7 @@ func TestPhase4_PerformanceImpact(t *testing.T) {
|
||||
// Helper function to estimate memory usage (simplified)
|
||||
func estimateMemoryUsage(mlOpt *MLOptimization) int64 {
|
||||
baseSize := int64(1024 * 1024) // 1MB base
|
||||
|
||||
|
||||
if mlOpt.WorkloadCoordinator != nil {
|
||||
baseSize += 512 * 1024 // 512KB
|
||||
}
|
||||
@@ -387,7 +395,7 @@ func estimateMemoryUsage(mlOpt *MLOptimization) int64 {
|
||||
if mlOpt.TensorOptimizer != nil {
|
||||
baseSize += 256 * 1024 // 256KB
|
||||
}
|
||||
|
||||
|
||||
return baseSize
|
||||
}
|
||||
|
||||
@@ -433,9 +441,9 @@ func TestPhase4_ShutdownSequence(t *testing.T) {
|
||||
mlOpt := NewMLOptimization(config, mockChunkCache, MockLookupFileId)
|
||||
|
||||
// Verify all components are running
|
||||
if mlOpt.WorkloadCoordinator == nil || mlOpt.GPUCoordinator == nil ||
|
||||
mlOpt.DistributedCoordinator == nil || mlOpt.ServingOptimizer == nil ||
|
||||
mlOpt.TensorOptimizer == nil {
|
||||
if mlOpt.WorkloadCoordinator == nil || mlOpt.GPUCoordinator == nil ||
|
||||
mlOpt.DistributedCoordinator == nil || mlOpt.ServingOptimizer == nil ||
|
||||
mlOpt.TensorOptimizer == nil {
|
||||
t.Fatal("Not all Phase 4 components initialized")
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user