This commit is contained in:
chrislu
2025-08-30 17:08:02 -07:00
parent 814e0bb233
commit 5fe7f3fef2
3 changed files with 653 additions and 274 deletions

View File

@@ -12,22 +12,22 @@ import (
type BatchAccessPattern int
const (
BatchPatternUnknown BatchAccessPattern = iota
BatchPatternLinear // Linear batch processing
BatchPatternStrided // Strided access with fixed gaps
BatchPatternShuffled // Randomized batch order
BatchPatternHierarchical // Hierarchical/nested batch access
BatchPatternMultiGPU // Multi-GPU distributed batches
BatchPatternPipelined // Pipelined batch processing
BatchPatternUnknown BatchAccessPattern = iota
BatchPatternLinear // Linear batch processing
BatchPatternStrided // Strided access with fixed gaps
BatchPatternShuffled // Randomized batch order
BatchPatternHierarchical // Hierarchical/nested batch access
BatchPatternMultiGPU // Multi-GPU distributed batches
BatchPatternPipelined // Pipelined batch processing
)
// BatchAccess represents a single file access that's part of batch processing
type BatchAccess struct {
Offset int64 // File offset
Size int // Access size
AccessTime time.Time // When accessed
IsRead bool // Whether this was a read operation
BatchHint string // Optional batch identifier hint
Offset int64 // File offset
Size int // Access size
AccessTime time.Time // When accessed
IsRead bool // Whether this was a read operation
BatchHint string // Optional batch identifier hint
}
// BatchInfo holds information about a detected batch
@@ -35,35 +35,35 @@ type BatchInfo struct {
sync.RWMutex
// Batch identification
BatchID string // Unique batch identifier
StartOffset int64 // Starting file offset
EndOffset int64 // Ending file offset
Size int64 // Total batch size in bytes
ItemCount int // Number of items in batch
ItemSize int64 // Average item size
BatchID string // Unique batch identifier
StartOffset int64 // Starting file offset
EndOffset int64 // Ending file offset
Size int64 // Total batch size in bytes
ItemCount int // Number of items in batch
ItemSize int64 // Average item size
// Access pattern
AccessPattern BatchAccessPattern // Detected access pattern
AccessOrder []int64 // Order of access within batch
AccessTimes []time.Time // When each item was accessed
ProcessingTime time.Duration // Total time to process batch
AccessPattern BatchAccessPattern // Detected access pattern
AccessOrder []int64 // Order of access within batch
AccessTimes []time.Time // When each item was accessed
ProcessingTime time.Duration // Total time to process batch
// Performance metrics
LoadTime time.Duration // Time to load batch from storage
ProcessTime time.Duration // Time to process batch (compute)
TotalTime time.Duration // Total end-to-end time
Throughput float64 // Items per second
LoadTime time.Duration // Time to load batch from storage
ProcessTime time.Duration // Time to process batch (compute)
TotalTime time.Duration // Total end-to-end time
Throughput float64 // Items per second
// Optimization state
IsPrefetched bool // Whether batch was prefetched
CacheHitRate float64 // Percentage of cache hits
OptimalPrefetch int64 // Recommended prefetch size
IsPrefetched bool // Whether batch was prefetched
CacheHitRate float64 // Percentage of cache hits
OptimalPrefetch int64 // Recommended prefetch size
// Relationship to other batches
PreviousBatch *BatchInfo // Previous batch in sequence
NextBatch *BatchInfo // Next batch in sequence
ParentBatch *BatchInfo // Parent batch (for hierarchical)
ChildBatches []*BatchInfo // Child batches (for hierarchical)
PreviousBatch *BatchInfo // Previous batch in sequence
NextBatch *BatchInfo // Next batch in sequence
ParentBatch *BatchInfo // Parent batch (for hierarchical)
ChildBatches []*BatchInfo // Child batches (for hierarchical)
}
// BatchOptimizer optimizes batch access patterns for ML workloads
@@ -71,87 +71,87 @@ type BatchOptimizer struct {
sync.RWMutex
// Configuration
maxBatchesTracked int // Maximum number of batches to track
batchDetectionWindow int // Window size for batch detection
minBatchSize int64 // Minimum size to consider as batch
maxBatchSize int64 // Maximum size to consider as batch
maxBatchesTracked int // Maximum number of batches to track
batchDetectionWindow int // Window size for batch detection
minBatchSize int64 // Minimum size to consider as batch
maxBatchSize int64 // Maximum size to consider as batch
// Batch tracking
activeBatches map[string]*BatchInfo // Currently active batches
completedBatches map[string]*BatchInfo // Recently completed batches
inodeToBatches map[uint64][]*BatchInfo // File to batches mapping
activeBatches map[string]*BatchInfo // Currently active batches
completedBatches map[string]*BatchInfo // Recently completed batches
inodeToBatches map[uint64][]*BatchInfo // File to batches mapping
// Pattern detection
accessHistory map[uint64][]BatchAccess // Recent access history per file
batchSequences map[uint64]*BatchSequence // Detected batch sequences
accessHistory map[uint64][]BatchAccess // Recent access history per file
batchSequences map[uint64]*BatchSequence // Detected batch sequences
// Optimization strategies
prefetchStrategies map[BatchAccessPattern]*PrefetchConfig // Prefetch configs per pattern
cacheStrategies map[BatchAccessPattern]*CacheConfig // Cache configs per pattern
prefetchStrategies map[BatchAccessPattern]*PrefetchConfig // Prefetch configs per pattern
cacheStrategies map[BatchAccessPattern]*CacheConfig // Cache configs per pattern
// Statistics
totalBatchesDetected int64 // Total batches detected
optimizationHits int64 // Successful optimization applications
optimizationMisses int64 // Failed optimization attempts
totalBatchesDetected int64 // Total batches detected
optimizationHits int64 // Successful optimization applications
optimizationMisses int64 // Failed optimization attempts
// Background processing
cleanupTicker *time.Ticker // Cleanup timer
stopCleanup chan struct{} // Cleanup stop signal
cleanupTicker *time.Ticker // Cleanup timer
stopCleanup chan struct{} // Cleanup stop signal
}
// BatchSequence represents a sequence of related batches
type BatchSequence struct {
sync.RWMutex
SequenceID string // Unique sequence identifier
Batches []*BatchInfo // Batches in sequence
Pattern BatchAccessPattern // Overall sequence pattern
StartTime time.Time // When sequence started
LastAccess time.Time // Last access in sequence
IsComplete bool // Whether sequence is complete
RepeatCount int // How many times sequence has repeated
SequenceID string // Unique sequence identifier
Batches []*BatchInfo // Batches in sequence
Pattern BatchAccessPattern // Overall sequence pattern
StartTime time.Time // When sequence started
LastAccess time.Time // Last access in sequence
IsComplete bool // Whether sequence is complete
RepeatCount int // How many times sequence has repeated
// Predictions
NextBatchOffset int64 // Predicted next batch offset
NextBatchSize int64 // Predicted next batch size
Confidence float64 // Confidence in predictions (0-1)
NextBatchOffset int64 // Predicted next batch offset
NextBatchSize int64 // Predicted next batch size
Confidence float64 // Confidence in predictions (0-1)
}
// PrefetchConfig holds configuration for prefetching strategies
type PrefetchConfig struct {
Strategy PrefetchStrategy // Which prefetch strategy to use
LookaheadCount int // How many items to prefetch ahead
PrefetchSize int64 // Size to prefetch per operation
ConcurrencyLevel int // How many concurrent prefetch operations
AdaptiveScaling bool // Whether to scale based on performance
Strategy PrefetchStrategy // Which prefetch strategy to use
LookaheadCount int // How many items to prefetch ahead
PrefetchSize int64 // Size to prefetch per operation
ConcurrencyLevel int // How many concurrent prefetch operations
AdaptiveScaling bool // Whether to scale based on performance
}
// CacheConfig holds configuration for caching strategies
type CacheConfig struct {
Policy CachePolicy // Which cache policy to use
RetentionTime time.Duration // How long to keep items cached
Priority CachePriority // Cache priority level
PreloadBatches int // How many batches to preload
Policy CachePolicy // Which cache policy to use
RetentionTime time.Duration // How long to keep items cached
Priority CachePriority // Cache priority level
PreloadBatches int // How many batches to preload
}
// NewBatchOptimizer creates a new batch optimizer
func NewBatchOptimizer() *BatchOptimizer {
bo := &BatchOptimizer{
maxBatchesTracked: 1000, // Track up to 1000 batches
batchDetectionWindow: 100, // Look at last 100 accesses
minBatchSize: 64 * 1024, // Minimum 64KB batch
maxBatchSize: 100 * 1024 * 1024, // Maximum 100MB batch
maxBatchesTracked: 1000, // Track up to 1000 batches
batchDetectionWindow: 100, // Look at last 100 accesses
minBatchSize: 64 * 1024, // Minimum 64KB batch
maxBatchSize: 100 * 1024 * 1024, // Maximum 100MB batch
activeBatches: make(map[string]*BatchInfo),
completedBatches: make(map[string]*BatchInfo),
inodeToBatches: make(map[uint64][]*BatchInfo),
accessHistory: make(map[uint64][]BatchAccess),
batchSequences: make(map[uint64]*BatchSequence),
activeBatches: make(map[string]*BatchInfo),
completedBatches: make(map[string]*BatchInfo),
inodeToBatches: make(map[uint64][]*BatchInfo),
accessHistory: make(map[uint64][]BatchAccess),
batchSequences: make(map[uint64]*BatchSequence),
prefetchStrategies: make(map[BatchAccessPattern]*PrefetchConfig),
cacheStrategies: make(map[BatchAccessPattern]*CacheConfig),
prefetchStrategies: make(map[BatchAccessPattern]*PrefetchConfig),
cacheStrategies: make(map[BatchAccessPattern]*CacheConfig),
stopCleanup: make(chan struct{}),
stopCleanup: make(chan struct{}),
}
// Initialize default strategies
@@ -169,11 +169,11 @@ func NewBatchOptimizer() *BatchOptimizer {
func (bo *BatchOptimizer) initializeDefaultStrategies() {
// Linear batch pattern - aggressive prefetching
bo.prefetchStrategies[BatchPatternLinear] = &PrefetchConfig{
Strategy: PrefetchAggressive,
LookaheadCount: 5,
PrefetchSize: 2 * 1024 * 1024, // 2MB
Strategy: PrefetchAggressive,
LookaheadCount: 5,
PrefetchSize: 2 * 1024 * 1024, // 2MB
ConcurrencyLevel: 3,
AdaptiveScaling: true,
AdaptiveScaling: true,
}
bo.cacheStrategies[BatchPatternLinear] = &CacheConfig{
Policy: CachePolicyTrainingAware,
@@ -184,11 +184,11 @@ func (bo *BatchOptimizer) initializeDefaultStrategies() {
// Shuffled batch pattern - conservative prefetching
bo.prefetchStrategies[BatchPatternShuffled] = &PrefetchConfig{
Strategy: PrefetchBalanced,
LookaheadCount: 2,
PrefetchSize: 512 * 1024, // 512KB
Strategy: PrefetchBalanced,
LookaheadCount: 2,
PrefetchSize: 512 * 1024, // 512KB
ConcurrencyLevel: 2,
AdaptiveScaling: true,
AdaptiveScaling: true,
}
bo.cacheStrategies[BatchPatternShuffled] = &CacheConfig{
Policy: CachePolicyLRU,
@@ -199,11 +199,11 @@ func (bo *BatchOptimizer) initializeDefaultStrategies() {
// Multi-GPU pattern - high concurrency
bo.prefetchStrategies[BatchPatternMultiGPU] = &PrefetchConfig{
Strategy: PrefetchAggressive,
LookaheadCount: 8,
PrefetchSize: 4 * 1024 * 1024, // 4MB
Strategy: PrefetchAggressive,
LookaheadCount: 8,
PrefetchSize: 4 * 1024 * 1024, // 4MB
ConcurrencyLevel: 6,
AdaptiveScaling: true,
AdaptiveScaling: true,
}
bo.cacheStrategies[BatchPatternMultiGPU] = &CacheConfig{
Policy: CachePolicyML,
@@ -260,7 +260,11 @@ func (bo *BatchOptimizer) detectBatchPattern(inode uint64, history []BatchAccess
}
// Look for batch boundaries by analyzing access gaps and patterns
recent := history[len(history)-10:] // Look at last 10 accesses
startIdx := len(history) - 10
if startIdx < 0 {
startIdx = 0
}
recent := history[startIdx:] // Look at last 10 accesses (or all if fewer)
if len(recent) < 3 {
recent = history
}
@@ -327,16 +331,16 @@ func (bo *BatchOptimizer) analyzePotentialBatch(accesses []BatchAccess, inode ui
batchID := generateBatchID(inode, minOffset, time.Now())
batchInfo := &BatchInfo{
BatchID: batchID,
StartOffset: minOffset,
EndOffset: maxOffset,
Size: batchSize,
ItemCount: itemCount,
ItemSize: totalSize / int64(itemCount),
AccessOrder: accessOrder,
AccessTimes: accessTimes,
TotalTime: timeSpan,
LoadTime: timeSpan, // Initially assume all time is load time
BatchID: batchID,
StartOffset: minOffset,
EndOffset: maxOffset,
Size: batchSize,
ItemCount: itemCount,
ItemSize: totalSize / int64(itemCount),
AccessOrder: accessOrder,
AccessTimes: accessTimes,
TotalTime: timeSpan,
LoadTime: timeSpan, // Initially assume all time is load time
}
return batchInfo
@@ -406,7 +410,7 @@ func (bo *BatchOptimizer) isStridedPattern(offsets []int64) bool {
}
// At least 80% of strides should be consistent
return float64(consistentStrides) / float64(len(offsets)-2) >= 0.8
return float64(consistentStrides)/float64(len(offsets)-2) >= 0.8
}
// isShuffledPattern checks if accesses are in randomized order
@@ -484,7 +488,7 @@ func (bo *BatchOptimizer) isPipelinedPattern(accessTimes []time.Time) bool {
// Calculate variance and CV
variance := (sumSq / n) - (mean * mean)
cv := float64(variance) / float64(mean * mean)
cv := float64(variance) / float64(mean*mean)
// Low coefficient of variation suggests regular pipelining
return cv < 0.2
@@ -505,8 +509,8 @@ func (bo *BatchOptimizer) calculateBatchMetrics(batch *BatchInfo, accesses []Bat
// Estimate processing vs load time (heuristic)
// In practice, this would need more sophisticated measurement
avgItemTime := timeSpan / time.Duration(batch.ItemCount)
batch.ProcessTime = avgItemTime / 2 // Assume 50% processing time
batch.LoadTime = avgItemTime / 2 // Assume 50% load time
batch.ProcessTime = avgItemTime / 2 // Assume 50% processing time
batch.LoadTime = avgItemTime / 2 // Assume 50% load time
}
// updateBatchSequence updates the batch sequence for an inode
@@ -637,15 +641,15 @@ func (bo *BatchOptimizer) GetBatchRecommendations(inode uint64) *BatchOptimizati
}
recommendations := &BatchOptimizationRecommendations{
ShouldOptimize: true,
Pattern: sequence.Pattern,
PrefetchSize: prefetchConfig.PrefetchSize,
PrefetchCount: prefetchConfig.LookaheadCount,
CachePriority: cacheConfig.Priority,
CacheRetention: cacheConfig.RetentionTime,
NextBatchOffset: sequence.NextBatchOffset,
NextBatchSize: sequence.NextBatchSize,
Confidence: sequence.Confidence,
ShouldOptimize: true,
Pattern: sequence.Pattern,
PrefetchSize: prefetchConfig.PrefetchSize,
PrefetchCount: prefetchConfig.LookaheadCount,
CachePriority: cacheConfig.Priority,
CacheRetention: cacheConfig.RetentionTime,
NextBatchOffset: sequence.NextBatchOffset,
NextBatchSize: sequence.NextBatchSize,
Confidence: sequence.Confidence,
}
return recommendations
@@ -653,15 +657,15 @@ func (bo *BatchOptimizer) GetBatchRecommendations(inode uint64) *BatchOptimizati
// BatchOptimizationRecommendations holds batch optimization recommendations
type BatchOptimizationRecommendations struct {
ShouldOptimize bool `json:"should_optimize"`
Pattern BatchAccessPattern `json:"pattern"`
PrefetchSize int64 `json:"prefetch_size"`
PrefetchCount int `json:"prefetch_count"`
CachePriority CachePriority `json:"cache_priority"`
CacheRetention time.Duration `json:"cache_retention"`
NextBatchOffset int64 `json:"next_batch_offset"`
NextBatchSize int64 `json:"next_batch_size"`
Confidence float64 `json:"confidence"`
ShouldOptimize bool `json:"should_optimize"`
Pattern BatchAccessPattern `json:"pattern"`
PrefetchSize int64 `json:"prefetch_size"`
PrefetchCount int `json:"prefetch_count"`
CachePriority CachePriority `json:"cache_priority"`
CacheRetention time.Duration `json:"cache_retention"`
NextBatchOffset int64 `json:"next_batch_offset"`
NextBatchSize int64 `json:"next_batch_size"`
Confidence float64 `json:"confidence"`
}
// GetBatchMetrics returns comprehensive batch optimization metrics
@@ -696,13 +700,13 @@ func (bo *BatchOptimizer) GetBatchMetrics() BatchOptimizerMetrics {
// BatchOptimizerMetrics holds metrics for batch optimization
type BatchOptimizerMetrics struct {
TotalBatchesDetected int64 `json:"total_batches_detected"`
ActiveBatches int64 `json:"active_batches"`
CompletedBatches int64 `json:"completed_batches"`
OptimizationHits int64 `json:"optimization_hits"`
OptimizationMisses int64 `json:"optimization_misses"`
OptimizationHitRate float64 `json:"optimization_hit_rate"`
PatternCounts map[BatchAccessPattern]int64 `json:"pattern_counts"`
TotalBatchesDetected int64 `json:"total_batches_detected"`
ActiveBatches int64 `json:"active_batches"`
CompletedBatches int64 `json:"completed_batches"`
OptimizationHits int64 `json:"optimization_hits"`
OptimizationMisses int64 `json:"optimization_misses"`
OptimizationHitRate float64 `json:"optimization_hit_rate"`
PatternCounts map[BatchAccessPattern]int64 `json:"pattern_counts"`
}
// cleanupRoutine performs periodic cleanup of old batch information

View File

@@ -0,0 +1,367 @@
package ml
import (
"testing"
)
// TestOptimizationEngine_Basic tests the basic functionality of the optimization engine
func TestOptimizationEngine_Basic(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
if engine == nil {
t.Fatal("Should create optimization engine")
}
if !engine.enabled {
t.Error("Engine should be enabled")
}
// Check that default rules and strategies are loaded
if len(engine.rules) == 0 {
t.Error("Should have default rules loaded")
}
if len(engine.strategies) == 0 {
t.Error("Should have default strategies loaded")
}
t.Logf("Engine initialized with %d rules, %d strategies", len(engine.rules), len(engine.strategies))
}
// TestOptimizationEngine_RuleEvaluation tests rule evaluation
func TestOptimizationEngine_RuleEvaluation(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
// Create test context for sequential access of a large model file
context := &OptimizationContext{
FilePath: "/models/large_model.pth",
FileSize: 2 * 1024 * 1024 * 1024, // 2GB
FileType: "model",
AccessPattern: SequentialAccess,
AccessFrequency: 10,
Framework: "pytorch",
WorkloadType: "training",
}
// Apply optimizations
result := engine.OptimizeAccess(context)
if result == nil {
t.Fatal("Should return optimization result")
}
if !result.Applied {
t.Error("Should apply optimizations for large model file with sequential access")
}
if result.Confidence < 0.5 {
t.Errorf("Expected confidence >= 0.5, got %.2f", result.Confidence)
}
if len(result.Optimizations) == 0 {
t.Error("Should have applied optimizations")
}
t.Logf("Applied %d optimizations with confidence %.2f",
len(result.Optimizations), result.Confidence)
for i, opt := range result.Optimizations {
t.Logf("Optimization %d: type=%s, target=%s", i+1, opt.Type, opt.Target)
}
}
// TestOptimizationEngine_FrameworkDetection tests framework detection
func TestOptimizationEngine_FrameworkDetection(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
testCases := []struct {
filePath string
expectedFramework string
}{
{"/models/model.pth", "pytorch"},
{"/models/model.pt", "pytorch"},
{"/models/saved_model.pb", "tensorflow"},
{"/models/model.h5", "tensorflow"},
{"/models/checkpoint.ckpt", "tensorflow"},
{"/data/dataset.tfrecord", "tensorflow"},
{"/unknown/file.bin", ""},
}
for _, tc := range testCases {
framework := engine.detectFramework(tc.filePath, nil)
if tc.expectedFramework == "" {
if framework != "" {
t.Errorf("File %s: expected no framework detection, got %s", tc.filePath, framework)
}
} else {
if framework != tc.expectedFramework {
t.Errorf("File %s: expected framework %s, got %s",
tc.filePath, tc.expectedFramework, framework)
}
}
}
}
// TestOptimizationEngine_FileTypeDetection tests file type detection
func TestOptimizationEngine_FileTypeDetection(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
testCases := []struct {
filePath string
expectedType string
}{
{"/models/model.pth", "model"},
{"/data/dataset.csv", "dataset"},
{"/configs/config.yaml", "config"},
{"/logs/training.log", "log"},
{"/unknown/file.bin", "unknown"},
}
for _, tc := range testCases {
fileType := engine.detectFileType(tc.filePath)
if fileType != tc.expectedType {
t.Errorf("File %s: expected type %s, got %s",
tc.filePath, tc.expectedType, fileType)
}
}
}
// TestOptimizationEngine_ConditionEvaluation tests condition evaluation
func TestOptimizationEngine_ConditionEvaluation(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
context := &OptimizationContext{
FilePath: "/models/test.pth",
FileSize: 5 * 1024 * 1024, // 5MB
FileType: "model",
AccessPattern: SequentialAccess,
Framework: "pytorch",
}
// Test various condition types
testConditions := []struct {
condition RuleCondition
expected bool
}{
{
condition: RuleCondition{
Type: "file_pattern",
Property: "extension",
Operator: "equals",
Value: ".pth",
},
expected: true,
},
{
condition: RuleCondition{
Type: "file_context",
Property: "size",
Operator: "greater_than",
Value: 1024 * 1024, // 1MB
},
expected: true,
},
{
condition: RuleCondition{
Type: "access_pattern",
Property: "pattern_type",
Operator: "equals",
Value: "sequential",
},
expected: true,
},
{
condition: RuleCondition{
Type: "workload_context",
Property: "framework",
Operator: "equals",
Value: "tensorflow",
},
expected: false,
},
}
for i, tc := range testConditions {
result := engine.evaluateCondition(tc.condition, context)
if result != tc.expected {
t.Errorf("Condition %d: expected %v, got %v", i+1, tc.expected, result)
}
}
}
// TestOptimizationEngine_PluginSystem tests the plugin system
func TestOptimizationEngine_PluginSystem(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
// Register a test plugin
plugin := NewPyTorchPlugin()
err := engine.RegisterPlugin(plugin)
if err != nil {
t.Fatalf("Failed to register plugin: %v", err)
}
// Verify plugin is registered
if _, exists := engine.plugins["pytorch"]; !exists {
t.Error("PyTorch plugin should be registered")
}
// Test framework detection through plugin
confidence := plugin.DetectFramework("/models/test.pth", nil)
if confidence < 0.5 {
t.Errorf("Expected high confidence for .pth file, got %.2f", confidence)
}
// Test optimization hints
context := &OptimizationContext{
FilePath: "/models/test.pth",
FileSize: 100 * 1024 * 1024, // 100MB
FileType: "model",
Framework: "pytorch",
}
hints := plugin.GetOptimizationHints(context)
if len(hints) == 0 {
t.Error("Plugin should provide optimization hints")
}
t.Logf("Plugin provided %d optimization hints", len(hints))
}
// TestOptimizationEngine_UsagePatterns tests usage pattern learning
func TestOptimizationEngine_UsagePatterns(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
context := &OptimizationContext{
FilePath: "/models/training_model.pth",
FileSize: 50 * 1024 * 1024, // 50MB
FileType: "model",
AccessPattern: SequentialAccess,
Framework: "pytorch",
WorkloadType: "training",
}
// Apply optimization multiple times to build usage patterns
for i := 0; i < 5; i++ {
result := engine.OptimizeAccess(context)
if result == nil {
t.Fatalf("Optimization %d failed", i+1)
}
}
// Check that usage patterns are being tracked
if len(engine.usagePatterns) == 0 {
t.Error("Should have learned usage patterns")
}
// Verify pattern characteristics
for patternKey, pattern := range engine.usagePatterns {
t.Logf("Learned pattern: %s (frequency=%d, success_rate=%.2f)",
patternKey, pattern.Frequency, pattern.SuccessRate)
if pattern.Frequency < 1 {
t.Errorf("Pattern %s should have frequency >= 1", patternKey)
}
}
}
// TestOptimizationEngine_Metrics tests metrics collection
func TestOptimizationEngine_Metrics(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
metrics := engine.GetMetrics()
if metrics == nil {
t.Fatal("Should return metrics")
}
expectedKeys := []string{"enabled", "rules_count", "templates_count", "strategies_count"}
for _, key := range expectedKeys {
if _, exists := metrics[key]; !exists {
t.Errorf("Metrics should contain key: %s", key)
}
}
if metrics["enabled"] != true {
t.Error("Metrics should show engine as enabled")
}
t.Logf("Engine metrics: %+v", metrics)
}
// TestOptimizationEngine_ConfigurationDriven tests configuration-driven optimization
func TestOptimizationEngine_ConfigurationDriven(t *testing.T) {
engine := NewOptimizationEngine(true)
defer engine.Shutdown()
// Test that the engine can apply optimizations based on its loaded configuration
context := &OptimizationContext{
FilePath: "/data/dataset.csv",
FileSize: 10 * 1024 * 1024, // 10MB
FileType: "dataset",
AccessPattern: SequentialAccess,
Framework: "",
WorkloadType: "training",
BatchSize: 32,
}
result := engine.OptimizeAccess(context)
if result == nil {
t.Fatal("Should return optimization result")
}
// The engine should make intelligent decisions based on context
if result.Applied && len(result.Optimizations) > 0 {
t.Logf("Successfully applied %d optimizations", len(result.Optimizations))
for _, opt := range result.Optimizations {
if opt.Type == "" || opt.Target == "" {
t.Error("Optimization should have valid type and target")
}
}
}
if len(result.Recommendations) > 0 {
t.Logf("Generated %d recommendations", len(result.Recommendations))
for _, rec := range result.Recommendations {
t.Logf("Recommendation: %s", rec)
}
}
}
// TestOptimizationEngine_Shutdown tests proper shutdown
func TestOptimizationEngine_Shutdown(t *testing.T) {
engine := NewOptimizationEngine(true)
if !engine.enabled {
t.Error("Engine should start enabled")
}
engine.Shutdown()
if engine.enabled {
t.Error("Engine should be disabled after shutdown")
}
// Test that optimization doesn't work after shutdown
context := &OptimizationContext{
FilePath: "/test.pth",
FileSize: 1024,
}
result := engine.OptimizeAccess(context)
if result.Applied {
t.Error("Should not apply optimizations after shutdown")
}
}

View File

@@ -9,15 +9,23 @@ import (
// MockChunkCache for testing
type MockChunkCache struct{}
func (m *MockChunkCache) HasChunk(fileId string, chunkOffset int64) bool { return false }
func (m *MockChunkCache) IsInCache(fileId string, forRead bool) bool { return false }
func (m *MockChunkCache) ReadChunk(fileId string, chunkOffset int64, buffer []byte) (int, error) { return 0, nil }
func (m *MockChunkCache) ReadChunkAt(buffer []byte, fileId string, offset uint64) (int, error) { return 0, nil }
func (m *MockChunkCache) WriteChunk(fileId string, chunkOffset int64, buffer []byte) error { return nil }
func (m *MockChunkCache) DeleteFileChunks(fileId string) {}
func (m *MockChunkCache) GetMetrics() interface{} { return struct{}{} } // Return empty struct
func (m *MockChunkCache) GetMaxFilePartSizeInCache() uint64 { return 64 * 1024 * 1024 } // 64MB default
func (m *MockChunkCache) Shutdown() {}
func (m *MockChunkCache) IsInCache(fileId string, forRead bool) bool { return false }
func (m *MockChunkCache) ReadChunk(fileId string, chunkOffset int64, buffer []byte) (int, error) {
return 0, nil
}
func (m *MockChunkCache) ReadChunkAt(buffer []byte, fileId string, offset uint64) (int, error) {
return 0, nil
}
func (m *MockChunkCache) WriteChunk(fileId string, chunkOffset int64, buffer []byte) error {
return nil
}
func (m *MockChunkCache) SetChunk(fileId string, buffer []byte) {}
func (m *MockChunkCache) DeleteFileChunks(fileId string) {}
func (m *MockChunkCache) GetMetrics() interface{} { return struct{}{} } // Return empty struct
func (m *MockChunkCache) GetMaxFilePartSizeInCache() uint64 { return 64 * 1024 * 1024 } // 64MB default
func (m *MockChunkCache) Shutdown() {}
// MockLookupFileId for testing
func MockLookupFileId(ctx context.Context, fileId string) (targetUrls []string, err error) {
@@ -117,9 +125,9 @@ func TestPhase4_ServingOptimizer_Basic(t *testing.T) {
// Test model registration (basic structure)
modelInfo := &ModelServingInfo{
ModelID: "resnet50-v1",
ModelPath: "/models/resnet50.pth",
Framework: "pytorch",
ModelID: "resnet50-v1",
ModelPath: "/models/resnet50.pth",
Framework: "pytorch",
ServingPattern: ServingPatternRealtimeInference,
}
@@ -158,19 +166,19 @@ func TestPhase4_TensorOptimizer_Basic(t *testing.T) {
func TestPhase4_MLOptimization_AdvancedIntegration(t *testing.T) {
// Create ML configuration with all Phase 4 features enabled
config := &MLConfig{
PrefetchWorkers: 8,
PrefetchQueueSize: 100,
PrefetchTimeout: 30 * time.Second,
EnableMLHeuristics: true,
SequentialThreshold: 3,
ConfidenceThreshold: 0.6,
MaxPrefetchAhead: 8,
PrefetchBatchSize: 3,
PrefetchWorkers: 8,
PrefetchQueueSize: 100,
PrefetchTimeout: 30 * time.Second,
EnableMLHeuristics: true,
SequentialThreshold: 3,
ConfidenceThreshold: 0.6,
MaxPrefetchAhead: 8,
PrefetchBatchSize: 3,
EnableWorkloadCoordination: true,
EnableGPUCoordination: true,
EnableDistributedTraining: true,
EnableModelServing: true,
EnableTensorOptimization: true,
EnableGPUCoordination: true,
EnableDistributedTraining: true,
EnableModelServing: true,
EnableTensorOptimization: true,
}
mockChunkCache := &MockChunkCache{}
@@ -203,9 +211,9 @@ func TestPhase4_MLOptimization_AdvancedIntegration(t *testing.T) {
// Register model for serving optimization
modelInfo := &ModelServingInfo{
ModelID: "bert-large",
ModelPath: "/models/bert-large.bin",
Framework: "transformers",
ModelID: "bert-large",
ModelPath: "/models/bert-large.bin",
Framework: "transformers",
ServingPattern: ServingPatternRealtimeInference,
}
mlOpt.ServingOptimizer.RegisterModel(modelInfo)
@@ -283,9 +291,9 @@ func TestPhase4_ConcurrentOperations(t *testing.T) {
go func(index int) {
defer wg.Done()
modelInfo := &ModelServingInfo{
ModelID: "concurrent-model-" + string(rune('0'+index)),
ModelPath: "/models/model-" + string(rune('0'+index)) + ".bin",
Framework: "pytorch",
ModelID: "concurrent-model-" + string(rune('0'+index)),
ModelPath: "/models/model-" + string(rune('0'+index)) + ".bin",
Framework: "pytorch",
ServingPattern: ServingPatternRealtimeInference,
}
mlOpt.ServingOptimizer.RegisterModel(modelInfo)
@@ -434,8 +442,8 @@ func TestPhase4_ShutdownSequence(t *testing.T) {
// Verify all components are running
if mlOpt.WorkloadCoordinator == nil || mlOpt.GPUCoordinator == nil ||
mlOpt.DistributedCoordinator == nil || mlOpt.ServingOptimizer == nil ||
mlOpt.TensorOptimizer == nil {
mlOpt.DistributedCoordinator == nil || mlOpt.ServingOptimizer == nil ||
mlOpt.TensorOptimizer == nil {
t.Fatal("Not all Phase 4 components initialized")
}